Interaction of dust grains in a plasma under quasineutrality conditions

Authors

  • A. E. Davletov
  • L. T. Yerimbetova
  • A. Kissan

DOI:

https://doi.org/10.26577/2218-7987-2014-5-2-37-42
        61 58

Keywords:

Dusty plasma, pseudo potential model, generalized Poisson-Boltzmann equation, finite size effects, polarization phenomena.

Abstract

Pseudo potential model of dust particles interaction in the plasma is proposedto take into account the finitesize, the polarization and the screening effects under total quasineutrality conditions. The interaction micro potentials of plasma constituents include the polarization phenomena within the charge image method under the assumption that the grains are made of a conductive material. The original insight of accounting for the finite size effect is to start counting distances from the grains’ surfaces rather than from their centers. The derivation procedurestems entirely fromthe renormalization theory of plasma particles interaction which results in the so-called generalized Poisson- Boltzmann equation. The main idea is to apply the renormalization theory in order to treat the dust grains as one component plasma with the specific interaction potentialderived in such a way so as to naturallyincorporate the number densities of electrons and ions of the buffer plasma andto exclude the grain number density. The pseudo potential model developed can further be utilized in theoretical considerations and computer simulations.

References

1 Stauber T., Schliemann J., Peres N.M.R. Dynamical polarizability of graphene beyond the Dirac cone approximation// Phys. Rev. B. – 2010. –
Vol. 81. – P. 085409.
2 Scholz A., Schliemann J. Dynamical currentcurrent susceptibility of gapped graphene// Phys. Rev. B. – 2011. – Vol. 83. – P. 235409.
3 Scholz A., Stauber T., Schliemann J. Dielectric function, screening, and plasmons of graphene in the presence of spin-orbit interactions//
Phys. Rev. B. – 2012. – Vol. 86. – P. 195424.
4 Dubin D. Structure of two-dimensional plasma crystals in unharmonic Penning traps// Phys. Rev. A. – 2013. – Vol. 88. – P. 013403.
5 Redmer R., Mattsson T., Nettelmann N., French M. The phase diagram of water and the magnetic field of Uranus and Neptune // Icarus. –
2011. – Vol. 211. – 798 p.
6 Leconte J., Chabrier G. Layered convection as the origin of Saturn's luminosity anomaly// Nature Geoscience. – 2013. – Vol. 6. – P. 47-350.
7 Zeng L., Sasselov D. The Effect of Temperature Evolution on the Interior Structure of
42 Interaction of dust g ains in a plasma under quasineutrality conditions
International Journal of mathematics and physics 5, №2, 37 (2014)
H2O-rich Planets// Astrophys. J. – 2014. – Vol. 784. – 96 p.
8 Dharma-wardana M.W.C. Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si// Phys. Rev. E. – 2012. – Vol. 86. – P.036407.
9 Dufty J., Dutta S. Classical representation of a quantum system at equilibrium: Theory// Phys. Rev. E. – 2013. – Vol. 87. – P. 032101.
10 School T., Bonitz M., Filinov A., Hochstuhl D., Dufty J.W. Configuration Path integral Monte Carlo// Contrib. Plasma Phys. –
2011. – Vol. 51. – P. 687-697.
11 Filinov V.S., Bonitz M., Ivanov Y.B.,
Levashov P.R., Fortov V.E. Quantum Monte Carlo
Simulations of Strongly Coupled Quark-Gluon
Plasma// Contrib. Plasma Phys. – 2012. – Vol. 52. –
P. 135-139.
12 Pandey B.P. Thermodynamics of a dusty plasma// Phys. Rev. E. – 2004. – Vol. 69. – P. 026410.
13 Vaulina O.S., Koss X.G., Khrustalyov Yu.V., Petrov O.F., Fortov V.E. Thermodynamic and transport properties of no ideal systems with
isotropic pair potentials// Phys. Rev. E. – 2010. –
Vol. 82. – P. 056411.
14 Shahzad A., He M.-G. Thermal Conductivity of Three-Dimensional Yukawa Liquids (Dusty Plasmas)// Contrib. Plasma Phys. –
2012. – Vol. 52. – P. 667-675.
15 Karakhtanov V.S., Redmer R., Reinholz H.,
Rцpke G. The influence of dynamical screening on
the transport properties of dense plasmas// Contrib.
Plasma Phys. – 2013. – Vol. 53. – P. 639-652.
16 Ott T., Löwen H., and Bonitz M. Dynamics of two-dimensional one-component and binary Yukawa systems in a magnetic field// Phys. Rev. E. – 2014. – Vol. 89. – P. 13105.
17 Goree J., Donko Z., Hartmann P. Cutoff wave number for shear waves and Maxwell relaxation time in Yukawa liquids// Phys. Rev. E. –
2012. – Vol. 85. – P. 066401.
18 Havnes O., Goertz C., Morfill G., Grun E., Ip W. Dust Charges, Cloud Potential, and Instabilities in a Dust Cloud Embedded in a
Plasma// J. Geophys. Res. – 1987. – Vol. 92. – P.
2281-2287.
19 Saranin V.A., Mayer V.V. Interaction of two charged conducting balls: theory and experiment// Physics – Uspekhi. V. – 2010. – Vol.
53 – P. 1067-1074.
20 Arkhipov Yu.V., Baimbetov F.B., Davletov A.E. Self-consistent chemical model of partially ionized plasmas// Phys. Rev. E. – 2011. – Vol. 83.
– P. 016405.
21 Tsytovich V., de Angelis U. Kinetic theory
of dusty plasmas. III. Dust–dust collision integrals//
Phys. Plasmas. – 2001. – Vol. 8. – P. 1141.
22 Khrapak S., Klumov B., Morfill G. Electric
Potential Around an Absorbing Body in Plasmas:
Effect of Ion-Neutral Collisions// Phys. Rev. Lett. –
2008. – Vol. 100. – P. 225003.
23 Khrapak S.A., Ivlev А. К, Моrfill G. Е.
Interaction potential of microparticles in a plasma:
Role of collisions with plasma particles//Phys. Rev.
E. – 2001. – Vol. 64. – P. 046403.
24 Filippov A.V., Zagorodny A.G., Starostin
A.N., Momot A. Kinetic description of the
screening of the charge of macroparticles in a
nonequilibrium plasma// JETP Lett. – 2008. – Vol.
86. – P. 761-766.
25 LampeM., Goswami R., Sternovsky Z.,
Robertson S., Gavrishchaka V., Ganguli G.,
JoyceG. Trapped ion effect on shielding, current
flow, and charging of a small object in a plasma//
Phys. Plasmas. – 2003. – Vol. 10. – P. 1500-1513.
26 Tolias P., Ratynskaia S. Screening in
weakly ionized dusty plasmas; effect of dust
density perturbations// Phys. Plasmas. – 2013. –
Vol. 20. – P. 023702.
27 Lisin Е.А., Vaulina O.S. Formation of
layered structures of particles with anisotropic pair
interaction// EPL – 2013. – Vol. 103. – P. 55002.
28 Vaulina O.S., Lisin Е.А., Gavrikov A.V.,
Petrov O.F., Fortov V.E. Determination of Pair
Interaction Forces between Particles in Nonideal
Dissipative Systems// Phys. Rev. Lett. – 2009. –
Vol. 103. – P. 035003.
29 Erimbetova L.T., Davletov A.E.,
KudyshevZh.A., MukhametkarimovYe.S. Influence
of Polarization Phenomena on Radial Distribution
Function of Dust Particles// Contrib. Plasma Phys.
– 2013. – Vol. 53. – P. 414-418.
30 Davletov A.E., Yerimbetova L.T.,
Mukhametkarimov Ye.S., Ospanova A.K. Finite
size effects in the static structure factor of dusty
plasmas// Phys. Plasmas. – 2014. – Vol. 21. – P.
073704.

Downloads

How to Cite

Davletov, A. E., Yerimbetova, L. T., & Kissan, A. (2014). Interaction of dust grains in a plasma under quasineutrality conditions. International Journal of Mathematics and Physics, 5(2), 37–42. https://doi.org/10.26577/2218-7987-2014-5-2-37-42

Issue

Section

Theoretical Physics and Plasma Physics