Mathematical modeling of the thermal discharge under various operational capacities of thermal power plants
DOI:
https://doi.org/10.26577/2218-7987-2014-5-2-18-23Keywords:
stratified medium, Navier-Stokes equations, operational capacity of TPP, finite volume me-thod, Runge-Kutta method.Abstract
This paper presents a mathematical model of the thermal discharge under various operational capacities of thermal power plants, which is solved by the equations of Navier - Stokes and temperature for an incompressible fluid in a stratified medium based on the method of splitting by physical parameters that can be discretize by the control volume method. In the first step it is assumed that the transfer of momentum carried out only by convection and diffusion. Intermediate velocity field is solved by 5-step Runge - Kutta method. At the second stage, the pressure field is solved based on the found intermediate velocity field. The algorithm is parallelized on high-performance systems. The obtained numerical results of three-dimensional stratified turbulent flow reveals to approximate qualitatively and quantitatively the basic laws of hydrothermal processes occurring in the aquatic environment.References
1. Issakhov A. Mathematical Modelling of the Influence of Thermal Power Plant on the Aquatic Environment with Different Meteorological Condition
by Using Parallel Technologies. Power, Control and Optimization. Lecture Notes in Electrical Engineering. Volume 239. – 2013. – P.165-179.
2. Issakhov A. Mathematical modelling of the influence of thermal power plant to the aquatic environment by using parallel technologies. AIP
Conf. Proc. 1499, – 2012. – Р. 15-18; doi: http://dx.doi.org /10.1063/ 1.4768963
3. Issakhov A. Mathematical modeling of influence of the thermal power plant with considering the meteorological condition at the reservoir-cooler. Вестник КазНУ, 2012. – №3(74). – P.50-59.
4. Lesieur M., Metais O., Comte P. Large eddy simulation of turbulence. – New York, Cambridge University Press, 2005. – P.219 .
5. Issakhov A. Large eddy simulation of turbulent mixing by using 3D decomposition method. Issue 4 (2011) J. Phys.: Conf. Ser. 318. – Р. 1282- 1288, 042051. doi: 10.1088/1742- 6596/318/4/042051
6. Chung T. J. Computational Fluid Dynamics. Cambridge University Press, 2002. – P.1012.
7. Ferziger J. H., Peric M. Computational Methods for Fluid Dynamics. Springer; 3rd edition, 2013. – P.426
8. Fletcher C.A. Computational Techniques for Fluid Dynamics. Vol 2: Special Techniques for Differential Flow Categories. – Berlin: Springer-
Verlag, 1988. – P. 485.
9. Roache, P.J. Computational Fluid Dynamics, Albuquerque, N.M.: Hermosa Publications. – 1972. – P.446.
10. Peyret, R., Taylor, D. Th. Computational Methods for Fluid Flow. – New York: Berlin: Springer-Verlag. – 1983. – P.358.
11. Issakhov A. Pryamoe chislennoe modelirovanie (DNS) turbulentnih techenii s ispolzovaniem parallelnih tehnologi. Bulletin of KazNU, 2012. –
№ 2(73). – P.81-91.
by Using Parallel Technologies. Power, Control and Optimization. Lecture Notes in Electrical Engineering. Volume 239. – 2013. – P.165-179.
2. Issakhov A. Mathematical modelling of the influence of thermal power plant to the aquatic environment by using parallel technologies. AIP
Conf. Proc. 1499, – 2012. – Р. 15-18; doi: http://dx.doi.org /10.1063/ 1.4768963
3. Issakhov A. Mathematical modeling of influence of the thermal power plant with considering the meteorological condition at the reservoir-cooler. Вестник КазНУ, 2012. – №3(74). – P.50-59.
4. Lesieur M., Metais O., Comte P. Large eddy simulation of turbulence. – New York, Cambridge University Press, 2005. – P.219 .
5. Issakhov A. Large eddy simulation of turbulent mixing by using 3D decomposition method. Issue 4 (2011) J. Phys.: Conf. Ser. 318. – Р. 1282- 1288, 042051. doi: 10.1088/1742- 6596/318/4/042051
6. Chung T. J. Computational Fluid Dynamics. Cambridge University Press, 2002. – P.1012.
7. Ferziger J. H., Peric M. Computational Methods for Fluid Dynamics. Springer; 3rd edition, 2013. – P.426
8. Fletcher C.A. Computational Techniques for Fluid Dynamics. Vol 2: Special Techniques for Differential Flow Categories. – Berlin: Springer-
Verlag, 1988. – P. 485.
9. Roache, P.J. Computational Fluid Dynamics, Albuquerque, N.M.: Hermosa Publications. – 1972. – P.446.
10. Peyret, R., Taylor, D. Th. Computational Methods for Fluid Flow. – New York: Berlin: Springer-Verlag. – 1983. – P.358.
11. Issakhov A. Pryamoe chislennoe modelirovanie (DNS) turbulentnih techenii s ispolzovaniem parallelnih tehnologi. Bulletin of KazNU, 2012. –
№ 2(73). – P.81-91.
Downloads
How to Cite
Issakhov, A. (2014). Mathematical modeling of the thermal discharge under various operational capacities of thermal power plants. International Journal of Mathematics and Physics, 5(2), 18–23. https://doi.org/10.26577/2218-7987-2014-5-2-18-23
Issue
Section
Informatics and Mathematical Modeling