Numerical study of supersonic turbulent free shear layer
DOI:
https://doi.org/10.26577/2218-7987-2014-5-2-4-17Keywords:
supersonic free shear flow, mixing layer, ENO-scheme, k-ε model, compressibility.Abstract
Numerical study of two-dimensional supersonic turbulent free shear layer is performed. The system of Fa-vre-Averaged Naveir-Stokes equations for multispecies flow is solved using ENO scheme of third-order in accuracy. The k-ε two-equation turbulence models with compressibility correction are applied to calculate the eddy viscosity coefficient. In order to produce the roll-up and pairing of vortex rings, an unsteady boundary condition is applied at the inlet plane. At the outflow, the non-reflecting boundary condition is taken. The obtained results are compared with available experimental data.References
1. Winant, C.D., Browand, F.K., 1974. Vortex pairing: the mechanism of turbulent mixing-layergrowth at moderate Reynolds number. J. Fluid
Mech. 63, P.237-255.
2. Brown, G.L., Roshko, A., 1974. On the density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, P.775-816.3. Bogdanoff, D.W., 1983. Compressibility effects in turbulent shear layers. AIAA J.21, P.926-927.
4. Papamoschou, D., Roshko, A., 1988. The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, P. 453-477.
5. Chinzei, N., Masuya, G., Komuro, T., Murakami A., Kudou, K., 1986. Spreading of twostream supersonic turbulent mixing layers. Phys.
Fluids 29, P. 1345-1347.
6. Goebel, S. G., Dutton, J.C., 1991. Experimental study of compressible turbulent mixing layers. AIAA Journal 29, 4, P. 538-546.
7. Oster, D., Wygnanski, I., 1982. The forced mixing layer between parallel streams. J. Fluid Mech. 123, P. 91-130.
8. Samimy, M., Elliot, G.S., 1990. Effects of compressibility on the characteristics of free shear layers. AIAA J. 28, P.439-445.
9. Elliot, G.S., Samimy, M., 1990. Compressibility effects in free shear layers. Phys. Fluids A 2, P.1231-1240.
10. Ju, Y., Niioka, T., 1993. Ignition Analysis of Unpremixed Reactants with Chain Mechanism in a Supersonic Mixing Layer. AIAA Journal,
Vol.31, No. 5, P. 863-868.
11. Im, H. G., Chao, B. H., Bechtold, J. K., Law, C. K., 1994. Analysis of Thermal Ignition in the Supersonic Mixing Layer. AIAA Journal, Vol.32, No. 2, P.341-349.
12. Cheng, T.S., Lee, K.S., 2005. Numerical simulations of
underexpanded supersonic jet and free shear layer using WENO schemes. International Journal of Heat and Fluid Flow 26, P.755-770.
13. Tang, W., Komerath, N.M., Sankar, L.N., 1990. Numerical simulation of the Growth of instabilities in Supersonic Free Shear Layers. J.Propulsion vol. 6, no. 4, P. 455-460.
14. Tang, W., Sankar, L.N., Komerath, N., 1989. Mixing enhancement in supersonic free shear layers. AIAA 2nd Shear Flow Conference,
AIAA 89-0981.
15. Reichert, R.S., Biringen, S., 2007. Numerical simulation of compressible plane jets. Mechanics Research Communications 34, P.249-259.
16. Dale A. Hudson, 1996. Numerical simulation of a confined supersonic shear layer. PhD dissertation, P.1-181.
17. Xiao-Tian Shi, Jun Chen, Wei-Tao Bi, Chi-Wang Shu, Zhen-Su She, 2011. Numerical simulations of compressible mixing layers with a discontinuous Galerkin method. Acta Mech. Sin. 27 (3),
P.318-329.
18. Zambon, A.C., Sriram, A.T., Chelliah, H.K., 2007. Development and Implementation of Explicit Reduced Reaction Models in Supersonic
Reacting Shear Flow Simulations. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2007-772.
19. Sriram, A.T., Zambon, A.C., Chelliah,H.K., 2008. Validation of Ethylene-Air Reduced Reaction Models in Supersonic Shear Flows. 46th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2008-993.
20. Da Silva, L. F. F., Deshaies, B., Champion, M., 1993. Some Specific Aspects of Combustion in Supersonic H2-Air Laminar Mixing Layers. Combustion Science and Technology, Vol. 89, P.317- 333.
21. Nishioka, M., Law, C.K., 1997. A Numerical Study of Ignition in the Supersonic Hydrogen/ Air Laminar Mixing Layer. Combustion and
Flame, Vol. 108, P.199-219.
22. Fang, X., Liu, F., Sirignano, W. A., 2001. Ignition and Flame Studies for an Accelerating Transonic Mixing Layer. Journal of Propulsion and
Power. Vol. 17, No. 5, P.1058-1066.
23. Ju, Y., Niioka, T., 1994. Reduced Kinetic Mechanism of Ignition for Nonpremixed Hydrogen/ Air in a Supersonic Mixing Layer. Combustion
and Flame, Vol. 99, P.240-246.
24. Ju, Y., Niioka, T., 1995. Ignition Simulation of Methane/Hydrogen Mixtures in a Supersonic Mixing Layers. Combustion and Flame, Vol.
102, P.462-470.
25. Tahsini, A.M., 2011. Ignition Analysis in Supersonic Turbulent Mixing Layer. World Academy of Science, Engineering and Technology 57,
P. 353-357.
26. Tahsini, A.M., 2012. Ignition Time Delay in Swirling Supersonic Flow Combustion. World Academy of Science, Engineering and Technology 70, P. 623-627.
27. Chakraboty, D., Paul, P. J., Mukunda, H.S., 2000. Evaluation of Combustion Models for High Speed H2/Air Confined Mixing Layer Using
DNS Data. Combustion and Flame, Vol. 121,
P.195-209.
28. Kee, R. J., Rupley, F. M., Miller, J. A.,1989. CHEMKIN-II: a Fortran chemical kinetic package for the analysis of gas-phase chemical
kinetics. SANDIA Report SAND89-8009.
29. Poinsot, T.J., Lele, S.K., 1992. Boundary conditions for direct simulation of compressible viscous flows. Journal of Computational Physics, No. 101, P.104-129.
30. Harten, A., Osher, S., Engquist, B., Chakravarthy, S.R., 1986. Some Results on Uniformly High-Order Accurate Essentially Non-oscillatory
Schemes. Applied Num. Math., Vol.2., P.347-377.
31. Yang, J. Y., 1991. Third order nonoscillatory schemes for the Euler equations. AIAA J., Vol. 29, No. 10, P.1611-1618.
32. Bruel, P., Naimanova, A. Zh., 2010. Computation of the normal injection of a hydrogen jet into a supersonic air flow. Thermophysics and
Aeromechanics, Vol. 17, No. 4, P.531-542.
33. Belyayev, Ye., Naimanova, A. Zh., 2012. Two-Dimensional Supersonic Flow with Perpendicular Injection of the Gas. Chapter 2 InTech open access book “Advanced Methods for Practical Applications
in Fluid Mechanics”, P.23-44.
34. Shuen, J. Sh., Yoon, S., 1989. Numerical study of chemical reacting flows using a lowerupper symmetric successive overrelaxation
scheme. AIAA J., Vol. 27, No. 12, P.1752-1760.
35. Belyayev Ye., Kaltayev A., Naimanova A. Zh., 2010. Supersonic Flow with Perpendicular Injection of a Hydrogen. Proceedings of 2010 2nd International Conference on Computer Engineeringand Technology, Vol. 5, Mechanical and Aerospace Engineering, V5-531-534.
Mech. 63, P.237-255.
2. Brown, G.L., Roshko, A., 1974. On the density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, P.775-816.3. Bogdanoff, D.W., 1983. Compressibility effects in turbulent shear layers. AIAA J.21, P.926-927.
4. Papamoschou, D., Roshko, A., 1988. The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, P. 453-477.
5. Chinzei, N., Masuya, G., Komuro, T., Murakami A., Kudou, K., 1986. Spreading of twostream supersonic turbulent mixing layers. Phys.
Fluids 29, P. 1345-1347.
6. Goebel, S. G., Dutton, J.C., 1991. Experimental study of compressible turbulent mixing layers. AIAA Journal 29, 4, P. 538-546.
7. Oster, D., Wygnanski, I., 1982. The forced mixing layer between parallel streams. J. Fluid Mech. 123, P. 91-130.
8. Samimy, M., Elliot, G.S., 1990. Effects of compressibility on the characteristics of free shear layers. AIAA J. 28, P.439-445.
9. Elliot, G.S., Samimy, M., 1990. Compressibility effects in free shear layers. Phys. Fluids A 2, P.1231-1240.
10. Ju, Y., Niioka, T., 1993. Ignition Analysis of Unpremixed Reactants with Chain Mechanism in a Supersonic Mixing Layer. AIAA Journal,
Vol.31, No. 5, P. 863-868.
11. Im, H. G., Chao, B. H., Bechtold, J. K., Law, C. K., 1994. Analysis of Thermal Ignition in the Supersonic Mixing Layer. AIAA Journal, Vol.32, No. 2, P.341-349.
12. Cheng, T.S., Lee, K.S., 2005. Numerical simulations of
underexpanded supersonic jet and free shear layer using WENO schemes. International Journal of Heat and Fluid Flow 26, P.755-770.
13. Tang, W., Komerath, N.M., Sankar, L.N., 1990. Numerical simulation of the Growth of instabilities in Supersonic Free Shear Layers. J.Propulsion vol. 6, no. 4, P. 455-460.
14. Tang, W., Sankar, L.N., Komerath, N., 1989. Mixing enhancement in supersonic free shear layers. AIAA 2nd Shear Flow Conference,
AIAA 89-0981.
15. Reichert, R.S., Biringen, S., 2007. Numerical simulation of compressible plane jets. Mechanics Research Communications 34, P.249-259.
16. Dale A. Hudson, 1996. Numerical simulation of a confined supersonic shear layer. PhD dissertation, P.1-181.
17. Xiao-Tian Shi, Jun Chen, Wei-Tao Bi, Chi-Wang Shu, Zhen-Su She, 2011. Numerical simulations of compressible mixing layers with a discontinuous Galerkin method. Acta Mech. Sin. 27 (3),
P.318-329.
18. Zambon, A.C., Sriram, A.T., Chelliah, H.K., 2007. Development and Implementation of Explicit Reduced Reaction Models in Supersonic
Reacting Shear Flow Simulations. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2007-772.
19. Sriram, A.T., Zambon, A.C., Chelliah,H.K., 2008. Validation of Ethylene-Air Reduced Reaction Models in Supersonic Shear Flows. 46th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2008-993.
20. Da Silva, L. F. F., Deshaies, B., Champion, M., 1993. Some Specific Aspects of Combustion in Supersonic H2-Air Laminar Mixing Layers. Combustion Science and Technology, Vol. 89, P.317- 333.
21. Nishioka, M., Law, C.K., 1997. A Numerical Study of Ignition in the Supersonic Hydrogen/ Air Laminar Mixing Layer. Combustion and
Flame, Vol. 108, P.199-219.
22. Fang, X., Liu, F., Sirignano, W. A., 2001. Ignition and Flame Studies for an Accelerating Transonic Mixing Layer. Journal of Propulsion and
Power. Vol. 17, No. 5, P.1058-1066.
23. Ju, Y., Niioka, T., 1994. Reduced Kinetic Mechanism of Ignition for Nonpremixed Hydrogen/ Air in a Supersonic Mixing Layer. Combustion
and Flame, Vol. 99, P.240-246.
24. Ju, Y., Niioka, T., 1995. Ignition Simulation of Methane/Hydrogen Mixtures in a Supersonic Mixing Layers. Combustion and Flame, Vol.
102, P.462-470.
25. Tahsini, A.M., 2011. Ignition Analysis in Supersonic Turbulent Mixing Layer. World Academy of Science, Engineering and Technology 57,
P. 353-357.
26. Tahsini, A.M., 2012. Ignition Time Delay in Swirling Supersonic Flow Combustion. World Academy of Science, Engineering and Technology 70, P. 623-627.
27. Chakraboty, D., Paul, P. J., Mukunda, H.S., 2000. Evaluation of Combustion Models for High Speed H2/Air Confined Mixing Layer Using
DNS Data. Combustion and Flame, Vol. 121,
P.195-209.
28. Kee, R. J., Rupley, F. M., Miller, J. A.,1989. CHEMKIN-II: a Fortran chemical kinetic package for the analysis of gas-phase chemical
kinetics. SANDIA Report SAND89-8009.
29. Poinsot, T.J., Lele, S.K., 1992. Boundary conditions for direct simulation of compressible viscous flows. Journal of Computational Physics, No. 101, P.104-129.
30. Harten, A., Osher, S., Engquist, B., Chakravarthy, S.R., 1986. Some Results on Uniformly High-Order Accurate Essentially Non-oscillatory
Schemes. Applied Num. Math., Vol.2., P.347-377.
31. Yang, J. Y., 1991. Third order nonoscillatory schemes for the Euler equations. AIAA J., Vol. 29, No. 10, P.1611-1618.
32. Bruel, P., Naimanova, A. Zh., 2010. Computation of the normal injection of a hydrogen jet into a supersonic air flow. Thermophysics and
Aeromechanics, Vol. 17, No. 4, P.531-542.
33. Belyayev, Ye., Naimanova, A. Zh., 2012. Two-Dimensional Supersonic Flow with Perpendicular Injection of the Gas. Chapter 2 InTech open access book “Advanced Methods for Practical Applications
in Fluid Mechanics”, P.23-44.
34. Shuen, J. Sh., Yoon, S., 1989. Numerical study of chemical reacting flows using a lowerupper symmetric successive overrelaxation
scheme. AIAA J., Vol. 27, No. 12, P.1752-1760.
35. Belyayev Ye., Kaltayev A., Naimanova A. Zh., 2010. Supersonic Flow with Perpendicular Injection of a Hydrogen. Proceedings of 2010 2nd International Conference on Computer Engineeringand Technology, Vol. 5, Mechanical and Aerospace Engineering, V5-531-534.
Downloads
How to Cite
Belyayev, Y., & Kaltayev, A. (2014). Numerical study of supersonic turbulent free shear layer. International Journal of Mathematics and Physics, 5(2), 4–17. https://doi.org/10.26577/2218-7987-2014-5-2-4-17
Issue
Section
Differential Equation and Mechanics