Radial distribution functions and thermodynamics of macroparticles in dusty plasmas

Authors

  • A. E. Davletov
  • L. T. Yerimbetova
  • A. K. Ospanova
        46 55

Keywords:

Dusty plasma, pseudopotential model, generalized Poisson-Boltzmann equation, radial distribution function, correlation energy.

Abstract

Starting from the previously developed pseudopotential model of dust particles interaction in the plasma, which takes into account both the finite-size and the screening effects, equilibrium distribution functionsarewell studied. Consideration is entirely based on the renormalization theory of plasma particles interaction which results in the so-called generalized Poisson-Boltzmann equation. The main idea is to apply the renormalization theory in order to treat the dust grains as a one component plasma with a specific interaction potential. The interaction potential derived in such a way does naturallyincorporate the number density of dust particles and can be utilized for further theoretical considerations. Such an approach provides quite effectivecalculation scheme for the radial distribution function of the dust particles whosenon-monotonic behavior is observed at different values of plasma parameters to prove short-range or even long-range order formation in the system. The correlation energy is investigated in a wide range of plasma parameters and the results are examined from the viewpoint of the thermodynamic stability.

References

1 Antipov S.N., Vasiliev M.M., Petrov O.F.
Non-ideal dust structures in cryogenic complex
plasmas //Contrib. Plasma Phys. – 2012. – Vol.52.
– P. 203-206.
2 Hyde T.W., Kong J., Matthews L.S.
Helical structures in vertically aligned dust
particle chains in a complex plasma // Phys. Rev.
E –2013. – Vol. 87. – P. 053106(8 p.).
3 Polyakov D.N., Shumova V.V., Vasiljak
L.M., Fortov V.E. Study of glow discharge
positive column with cloud of disperse particles //
Phys. Lett. A – 2011. – Vol. 375. – P. 3300-3305.
4 .Adhikary N.C., Bailung H., Pal A.R.,
Chutia J. Observation of sheath modification in
laboratory dusty plasmas // Phys. Plasmas – 2007.
– Vol. 14. – P. 103705 (7 p.).
5 Zhukhovitskii D.I., Fortov V.E.,
Molotkov V.I., Lipaev A.M., Naumkin V.N.,
Thomas H.M., Ivlev A.V., Schwabe M., Morfill
G.E. Nonviscous motion of a slow particle in a
dust crystal under microgravity conditions // Phys.
Rev. E – 2012. – Vol. 86. – P. 016401 (7 p.).
6 Ali S. Dust charging effects on test charge
potential in a multi-ion dusty plasma // Phys.
Plasmas. – 2009. – Vol. 16. – P. 113706 (5 p.).
7 Tribeche M., Shukla P.K. Charging of a
dust particle in a plasma with a nonextensive ion
distribution function // Phys. Lett. A –2012. – Vol.
376. – P. 1207-1210.
А.E. Davletov, L.T. Yerimbetova, A.K. Ospanova
International Journal of mathematics and physics 4, №2 (2013)
71
8 Vishnyakov V.I. Charging of dust in
thermal collisional plasmas // Phys. Rev. E –
2012. – Vol. 85. – P. 026402 (6 p.).
9 Hutchinson I.H. Intergrain forces in low-
Mach-number plasma wakes // Phys. Rev. E –
2012. – Vol. 85. – P. 066409 (8 p.).
10 Donko Z., Hartmann P., Shukla P.K.
Consequences of an attractive force on collective
modes and dust structures in a strongly coupled
dusty plasma // Phys. Lett. A – 2012. – Vol. 376.
– P. 3199-3203.
11 Liu Y., Liu S.Q., Xu K. Debye shielding
in a dusty plasma with nonextensively distributed
electrons and ions // Phys. Plasmas. – 2012. – Vol.
19. – P. 073702 (6 p.).
12 Shahzad A., He M.-G. Thermal
conductivity of three dimensional Yukawa liquids
// Contrib. Plasma Phys. – 2012. – Vol. 52. – P.
667-675.
13 Khrustalyov Yu.V., Vaulina O.S. Numerical
simulations of thermal conductivity in dissipative
two-dimensional Yukawa systems // Phys.
Rev. E – 2012. – Vol. 85. – P. 046405 (6 p.).
14 Goree J., Donko Z., Hartmann P. Cutoff
wavenumber for shear waves and Maxwell
relaxation time in Yukawa liquids // Phys. Rev. E
– 2012. – Vol. 85. – P. 066401 (7 p.).
15 Ghosh S. Shock wave in a twodimensional
dusty plasma crystal // Phys. Plasmas
– 2009. – Vol. 16. – P. 103701 (6 p.).
16 Schwabe M., Graves D.B. Simulating
the dynamics of complex plasmas // Phys. Rev. E
– 2013. – Vol. 88. – P. 023101 (11 p.).
17 Melzer A., Schella A., Miksch T.,
Schablinski J., Block D., Piel A., Thomsen H.,
Kahlert H., Bonitz M. Phase transitions of finite
dust clusters in dusty plasmas // Contrib. Plasma
Phys. – 2012. – Vol. 52. – P. 795-803.
18 Давлетов А.Е., Еримбетова Л.Т.,
Оспанова А., Статический структурный фак-
тор макрочастиц в пылевой плазме, Известия
НАН РК. – 2013. – №2. – С.51-55.
19 Davletov A. E., Yerimbetova L.T.,
MukhametkarimovYe.S., KudyshevZh.A.,
Influence of polarization phenomena on radial
distribution function of dust particles //
Contrib.Plasma Phys. – 2013. – Vol. 53. – No.4-5.
– P. 414-418.
20 ArkhipovYu.V., Baimbetov F.B.,
Davletov A.E. Self-consistent chemical model of
partially ionized plasmas // Phys. Rev. E. – 2011.
– Vol. 83. – P. 016405 (15 р.).
21 Arkhipov Yu.V., Baimbetov F.B.,
Davletov A.E., Ramazanov T.S. Equilibrium
properties of H-plasma // Contrib. Plasma Phys. –
1999. – Vol. 39. – P. 495-499.
22 Arkhipov Yu.V., Baimbetov F.B.,
Davletov A.E. Thermodynamics of dense hightemperature
plasmas: Semiclassical approach //
Eur. Phys. J. D. – 2000. – Vol. 8. – P. 299-304.
23 Arkhipov Yu.V., Baimbetov F.B.,
Davletov A.E., Starikov K.V. On the electrical conductivity
of semiclassical two-component plasmas //
J. Plasma Phys. – 2002. – Vol. 68. – P. 81-86.
24 Arkhipov Yu.V., Baimbetov F.B.,
Davletov A.E. Ionization equilibrium and
equation of state of partially ionized hydrogen
plasmas: Pseudopotential approach in chemical
picture // Phys. Plasmas. – 2005. – Vol. 12. –
P. 082701 (7 р.).
25 Arkhipov Yu.V., Baimbetov F.B.,
Davletov A.E. Pseudopotential theory of a
partially ionized hydrogen plasma // Contrib.
Plasma Phys. – 2003. – Vol. 43. – P. 258-260.

Downloads

How to Cite

Davletov, A. E., Yerimbetova, L. T., & Ospanova, A. K. (2013). Radial distribution functions and thermodynamics of macroparticles in dusty plasmas. International Journal of Mathematics and Physics, 4(2), 64–71. Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/80

Issue

Section

Theoretical Physics and Plasma Physics