Forced dynamics of oscillator ensembles with global nonlinear coupling
Keywords:
Oscillator populations, external forcing, nonlinear coupling, electronic experimentAbstract
We perform experiments with 72 electronic limit-cycle oscillators, globally coupled via a linear or nonlinear feedback loop. While in the linear case we observe standard Kuramoto-like synchronization transition, in the nonlinear case, with increase of the coupling strength, we first observe a transition to full synchrony and then a desynchronization transition to quasiperiodic state. In this state the ensemble remains, however, coherent so that the mean field is non-zero, but mean field frequency is large than frequencies of all oscillators. Next, we analyze common periodic forcing of the linearly or nonlinearly coupled ensemble and demonstrate regimes when the mean field is entrained by the force whereas the oscillators are not.References
1 A. T. Winfree, The Geometry of Biological
Time (Springer, Berlin, 1980).
2 Y. Kuramoto, Chemical Oscillations,
Waves and Turbulence (Springer, Berlin, 1984).
3 A. Pikovsky, M. Rosenblum, and J.
Kurths, Synchronization. A Universal Concept in
Nonlinear Sciences. (Cambridge University Press,
Cambridge, 2001);
4 Y. Kuramoto, in International Symposium
on Mathematical Problems in Theoretical
Physics, edited by H. Araki (Springer Lecture
Notes Phys., v. 39, New York, 1975) p. 420.
5 H. Daido, Phys. Rev. Lett. 73, 760 (1994).
6 D. Paz´o, Phys. Rev. E 72, 046211 (Oct
2005).
7 K. Okuda, Physica D 63, 424 (1993);
8 P. C. Matthews and S. H. Strogatz, Phys.
Rev. Lett. 65, 1701 (1990);
9 S. Olmi, A. Politi, and A. Torcini,
Europhys. Lett. 92, 60007 (2010).
10 D. Hansel, G. Mato, and C. Meunier,
Phys. Rev. E 48, 3470?3477 (1993);
11 C. van Vreeswijk, Phys. Rev. E 54, 5522
(1996);
12 A. Vilfan and T. Duke, Phys. Rev. Lett.
91, 114101 (2003).
13 A. Temirbayev, Z. Zhanabaev, S.
Tarasov, V. Ponomarenko, and M. Rosenblum,
Phys. Rev. E 85, 015204 (2012).
14 Y. Baibolatov, M. Rosenblum, Z. Z.
Zhanabaev, M. Kyzgarina, and A. Pikovsky, Phys.
Rev. E 80, 046211 (2009).
15 Y. Baibolatov, M. Rosenblum, Z. Z.
Zhanabaev, and A. Pikovsky, Phys. Rev. E 82,
016212 (2010).
Time (Springer, Berlin, 1980).
2 Y. Kuramoto, Chemical Oscillations,
Waves and Turbulence (Springer, Berlin, 1984).
3 A. Pikovsky, M. Rosenblum, and J.
Kurths, Synchronization. A Universal Concept in
Nonlinear Sciences. (Cambridge University Press,
Cambridge, 2001);
4 Y. Kuramoto, in International Symposium
on Mathematical Problems in Theoretical
Physics, edited by H. Araki (Springer Lecture
Notes Phys., v. 39, New York, 1975) p. 420.
5 H. Daido, Phys. Rev. Lett. 73, 760 (1994).
6 D. Paz´o, Phys. Rev. E 72, 046211 (Oct
2005).
7 K. Okuda, Physica D 63, 424 (1993);
8 P. C. Matthews and S. H. Strogatz, Phys.
Rev. Lett. 65, 1701 (1990);
9 S. Olmi, A. Politi, and A. Torcini,
Europhys. Lett. 92, 60007 (2010).
10 D. Hansel, G. Mato, and C. Meunier,
Phys. Rev. E 48, 3470?3477 (1993);
11 C. van Vreeswijk, Phys. Rev. E 54, 5522
(1996);
12 A. Vilfan and T. Duke, Phys. Rev. Lett.
91, 114101 (2003).
13 A. Temirbayev, Z. Zhanabaev, S.
Tarasov, V. Ponomarenko, and M. Rosenblum,
Phys. Rev. E 85, 015204 (2012).
14 Y. Baibolatov, M. Rosenblum, Z. Z.
Zhanabaev, M. Kyzgarina, and A. Pikovsky, Phys.
Rev. E 80, 046211 (2009).
15 Y. Baibolatov, M. Rosenblum, Z. Z.
Zhanabaev, and A. Pikovsky, Phys. Rev. E 82,
016212 (2010).
Downloads
How to Cite
Temirbayev, A. A., Nalibayev, Y. D., Zhanabaev, Z. Z., Ponomarenko, V. I., & Rosenblum, M. (2012). Forced dynamics of oscillator ensembles with global nonlinear coupling. International Journal of Mathematics and Physics, 3(1), 85–90. Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/73
Issue
Section
Chemical Physics and Radio Phisics