Determination energy spectrum H_2^+ ,D and 2 T molecular ions with orbital excitation
Keywords:
molecular hydrogen ions, bound states in the functional approachAbstract
On the basis of the investigation of the asymptotic behavior of the correlation functions of the corresponding field currents with the necessary quantum numbers the analytic method for the determination of the energy spectrum of the three-body Coulomb system is suggested. In the framework of this analytical approach we determine the energy spectrum of the molecular hydrogen ions with orbital excitation. In our case, relativistic corrections are taken into account by the constituent mass of the constituent particles, as well as by the interaction potential. Our results showed that the masses of the constituent particles differ from the masses of the particles in the free state. The insreasing of constituent mass of the electron is comparatively larger than the insreasing of constituent mass of the proton, deuteron and triton. Found that the constituent masses of the electron for the molecular ions of hydrogen 2 2 H ,D and 2 T are different. Thus, our results on the energy spectrum of molecular hydrogen ions very well agreement with existing results of a precision spectroscopy, this is achieved, taking into account the value of the constituent masses of particles.References
1 M.I.Eides, et.al., Phys. Repor.,2001.
V.342, P.61.
2 J.Beringer et.al., Review of Particle
Physics. Phys.Rev. 2012.V.D 86.P.010001
3 V.B.Berestetskii, E.M.Lifshitz,
L.P.Pitaevskii, Quantum Electrodynamics, 2nd
Edition, Pergamon Press, Oxford, 1982.
4 W.E.Caswell and G.P.Lepage, Phys. Let.
B. 1986. V.167. P.437.
5 T.Kinoshita and M.Nio, Phys. Rev. D.
1996. V.53. P.4909.
6 M.Dineykhan, S.A.Zhaugasheva,
Toinbaeva N.Sh and A.Jakhanshir, J.Phys.B:
At.Mol.Opt.Phys. 2009. V.42. P. 145001.
7 M.Dineykhan, S.A.Zhaugasheva,
N.Sh.Toinbaeva, Jour.Phys.B: At.Mol.Opt.
Phys.2010. V.43. P.015003(7pp).
8 M.Dineykhan and S.A.Zhaugasheva,
Physics of Particles and Nuclei, 2011. V.42.
P.379–413.
9 R.P.Feynman and A.P.Hibbs, Quantum
Mechanics and Path Integrals (Me Graw-Hill,
New York, 1963).
10 M.Dineykhan, G.V.Efimov and
Kh.Namsrai, Fortschr. Phys. 1991.V.39. P. 259.
11 M.Dineykhan, G.V.Efimov, G.Ganbold
and S.N.Nedelko, Oscillator representation in
quantum physics, (Lecture Notes in Physics,
Springer-Verlag, Berlin, 1995), V. 26.
12 V.D.Efros, Sov.Phys.J. Exp. Theor. Phys.
63, 5 (1985)
13 D.A.Varshalovich, A.N.Moskalev, and
V.K.Khersonskii, Quantum Theory of Angular
Momentum (Nauka, Moscow,1975) [in Russia]
14 M.Dineykhan and G.V.Efimov, Rep.
Math. Phys. 1995. V.36, P.287; Yad. Fiz. 1996.
V.59, 862; M.Dineykhan Z. Phys. 1997. V. D41.
P.77; M.Dineykhan, R.G.Nazmitdinov Yad. Fiz.
1999. V. 62. P.143; M.Dineykhan,
S.A.Zhaugasheva, R.G.Nazmitdinov, JETP. 2001.
V.119.
15 Z.-Ch.Yan, J.-Y.Zhang, and Y.Li,
Phys.Rev.A 67, 062504 (2003)
16 J.M.Taylor, Z.-C.Yan, A.Dalgarno and
J.F.Baab, Mol.Phys. 97,25 (1999)
17 R.E.Moss, J.Phys.B 32,L89 (1999)
V.342, P.61.
2 J.Beringer et.al., Review of Particle
Physics. Phys.Rev. 2012.V.D 86.P.010001
3 V.B.Berestetskii, E.M.Lifshitz,
L.P.Pitaevskii, Quantum Electrodynamics, 2nd
Edition, Pergamon Press, Oxford, 1982.
4 W.E.Caswell and G.P.Lepage, Phys. Let.
B. 1986. V.167. P.437.
5 T.Kinoshita and M.Nio, Phys. Rev. D.
1996. V.53. P.4909.
6 M.Dineykhan, S.A.Zhaugasheva,
Toinbaeva N.Sh and A.Jakhanshir, J.Phys.B:
At.Mol.Opt.Phys. 2009. V.42. P. 145001.
7 M.Dineykhan, S.A.Zhaugasheva,
N.Sh.Toinbaeva, Jour.Phys.B: At.Mol.Opt.
Phys.2010. V.43. P.015003(7pp).
8 M.Dineykhan and S.A.Zhaugasheva,
Physics of Particles and Nuclei, 2011. V.42.
P.379–413.
9 R.P.Feynman and A.P.Hibbs, Quantum
Mechanics and Path Integrals (Me Graw-Hill,
New York, 1963).
10 M.Dineykhan, G.V.Efimov and
Kh.Namsrai, Fortschr. Phys. 1991.V.39. P. 259.
11 M.Dineykhan, G.V.Efimov, G.Ganbold
and S.N.Nedelko, Oscillator representation in
quantum physics, (Lecture Notes in Physics,
Springer-Verlag, Berlin, 1995), V. 26.
12 V.D.Efros, Sov.Phys.J. Exp. Theor. Phys.
63, 5 (1985)
13 D.A.Varshalovich, A.N.Moskalev, and
V.K.Khersonskii, Quantum Theory of Angular
Momentum (Nauka, Moscow,1975) [in Russia]
14 M.Dineykhan and G.V.Efimov, Rep.
Math. Phys. 1995. V.36, P.287; Yad. Fiz. 1996.
V.59, 862; M.Dineykhan Z. Phys. 1997. V. D41.
P.77; M.Dineykhan, R.G.Nazmitdinov Yad. Fiz.
1999. V. 62. P.143; M.Dineykhan,
S.A.Zhaugasheva, R.G.Nazmitdinov, JETP. 2001.
V.119.
15 Z.-Ch.Yan, J.-Y.Zhang, and Y.Li,
Phys.Rev.A 67, 062504 (2003)
16 J.M.Taylor, Z.-C.Yan, A.Dalgarno and
J.F.Baab, Mol.Phys. 97,25 (1999)
17 R.E.Moss, J.Phys.B 32,L89 (1999)
Downloads
How to Cite
Dineykhan, M., Zhaugasheva, S. A., & Bekbaev, A. K. (2012). Determination energy spectrum H_2^+ ,D and 2 T molecular ions with orbital excitation. International Journal of Mathematics and Physics, 3(1), 72–84. Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/72
Issue
Section
Nuclear Physics and Nanotechnology