Static structure factor of macroparticles in dusty plasmas

Authors

  • A. E. Davletov
  • L. T. Yerimbetova
  • A. K. Ospanova
        33 37

Keywords:

dusty plasma, pseudopotential model, generalized Poisson-Boltzmann equation, the renormalization theory of plasma particles interaction, static structure factor.

Abstract

Equilibrium distribution functions are studied based on the previously proposed pseudopotential model of dust particles interaction in the plasma, which takes into account both the finite-size and the screening effects. Consideration is made in the framework of the renormalization theory of plasma particles interaction leading to the so-called generalized Poisson-Boltzmann equation. The main idea is to re-use the renormalization theory to treat the dust component of the plasma. Initially, a generalized Poisson-Boltzmann equation is used to determine characteristics of the interaction between two isolated dust particles. The interaction potential obtained in that way does not contain the number density of dust particles and can be utilized for further theoretical considerations. In particular, this paper re-uses the Poisson-Boltzmann equation to derive equilibrium distribution functions of dust particles. Such an approach allows one to obtain analytical expressions for the static structure factor of the dust particles. Non monotonic behavior of the static structure factor of the dust particles is observed at different values of plasma parameters, which may indicate the short-range or even long-range order formation in the system.

References

1 Boshkayev K., Rueda J.A., Ruffini R.,
Siutsou I. General Relativistic and Newtonian
White Dwarfs // Proceedings of the Thirteenth
Marcel Grossman Meeting on General Relativity,
edited by Rosquist K., Jantzen R., Ruffini R. /
World Scientific – Singapore, 2012. (in press)
2 Rotondo M., Rueda J.A., Ruffini R.,
Xue S.S. Relativistic Feynman-Metropolis-Teller
theory for white dwarfs in general relativity //
Physical Review D – 2011. – Vol. 84. – Issue 8. –
id. 084007
3 Rotondo M., Rueda J.A., Ruffini R.,
Xue S.S. Relativistic Thomas-Fermi treatment of
compressed atoms and compressed nuclear matter
66 Spin-up and spin-down evolution in general relativistic rotating white dwarfs
International Journal of mathematics and physics 4, №1, 62 (2013)
cores of stellar dimensions // Physical Review C. –
2011. – Vol. 83. – Issue 4. – id. 045805.
4 Chandrasekhar S. The Maximum Mass of
Ideal White Dwarfs // Astrophysical Journal. –
1931. – Vol. 74. – P. 81.
5 Hamada T., Salpeter E.E. Models for Zero-
Temperature Stars // Astrophysical Journal. – 1961.
– Vol. 134. – P. 683.
6 Boshkayev K., Rueda J., Ruffini R. On the
Maximum Mass of General Relativistic Uniformly
Rotating White Dwarfs // International Journal of
Modern Physics E. – 2011. – Vol. 20. – P. 136–
140.
7 Boshkayev K., Rueda J., Ruffini R. On the
Maximum Mass of General Relativistic Uniformly
Rotating 4He, 12C, 16O and 56Fe White Dwarfs //
From Nuclei to White Dwarfs to Neutron Stars,
edited by Mezzacappa A., Ruffini R. – 2011 (in
press).
8 Salpeter E.E. Energy and Pressure of a Zero-
Temperature Plasma // Astrophysical Journal. –
1961. – Vol. 134. – P. 669.
9 Boshkayev K., Rueda J., Ruffini R. On the
Maximum Mass and Minimum Rotation Period of
Relativistic Uniformly Rotating White Dwarfs //
3rd Galileo-Xu Guangqi Meeting – Proceedings,
edited by Cao Zh., Chen X., Ruffini R., Xue Sh.,
Zhang C-M., Zhang Sh. – 2011 (in press).
10 Boshkayev K., Rueda J., Ruffini R.,
Siutsou I. On General Relativistic Uniformly
Rotating White Dwarfs // Astrophysical Journal. –
2013. – Vol. 762. – Issue 2. – P. 117.
11 Yakovlev D.G., Gasques L.R., Afanasjev
A.V., Beard M., Wiescher M. Fusion reactions in
multicomponent dense matter // Physical Review C.
– 2006. – Vol. 74. – Issue 3. – id. 035803.
12 Gasques L.R., Afanasjev A.V., Beard M.,
Chamon L.C., Ring P., Wiescher M. Pycnonuclear
reaction rates between neutron-rich nuclei //
Nuclear Physics A. – 2005. – Vol. 758.
– P.134–137.
13 Boshkayev K. Rotating White Dwarf and
Neutron Stars in General Relativity // PhD thesis. –
2012. http: // padis. uniroma1. It / bitstream /
10805 / 1934 / 1 / Thesis % 20 of % 20 Kuantay %
20 Boshkayev. pdf
14 Hartle J.B. Slowly Rotating Relativistic
Stars. I. Equations of Structure // Astrophysical
Journal. – 1967. – Vol. 150. – P. 1005.
15 Hartle J.B., Thorne K.S. Slowly Rotating
Relativistic Stars. II. Models for Neutron Stars and
Supermassive Stars // Astrophysical Journal. –
1968. – Vol. 153. – P. 807.
16 Shapiro S.L., Teukolsky S.A., Nakamura T.
Spin-up of a rapidly rotating star by angular
momentum loss // Astrophysical Journal Letters. –
1990. – Vol. 357. – P. L17–L20.
17 Malheiro M., Rueda Jorge A., Ruffini R.
SGRs and AXPs as Rotation-Powered Massive
White Dwarfs // Publications of the Astronomical
Society of Japan. – 2012. – Vol. 64. – No.3. – P. 56.
18 Geroyannis V.S., Papasotiriou P.J. Spin-up
and Spin-down of Rotating Magnetic White
Dwarfs: A Straightforward Numerical Approach //
Astrophysical Journal. – 2000. – Vol. 534. – Issue
1. – P. 359–366.
19 Ilkov M., Soker N. Type Ia supernovae
from very long delayed explosion of core-white
dwarf merger// Monthly Notices of the Royal
Astronomical Society. – 2012. – Vol. 419. – Issue
2. – P. 1695–1700.
20 Ilkov M., Soker N. The number of
progenitors in the core-degenerate scenario for
Type Ia supernovae // Monthly Notices of the
Royal Astronomical Society. – 2013. – Vol. 428. –
Issue 1. – P. 579–586.

Downloads

How to Cite

Davletov, A. E., Yerimbetova, L. T., & Ospanova, A. K. (2013). Static structure factor of macroparticles in dusty plasmas. International Journal of Mathematics and Physics, 4(1), 62–71. Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/49

Issue

Section

Theoretical Physics and Plasma Physics