Energy loss of relativistic projectiles in non-ideal electron liquids

Authors

  • Yu. V. Arkhipov
  • A. B. Ashikbayeva
  • A. Askaruly
  • A. E. Davletov
  • D. Palací
  • I. M. Tkachenko

DOI:

https://doi.org/10.1234/ijmph.v1i4.47
        49 52

Keywords:

stopping power, relativistic velocity, sum rules, method of moments.

Abstract

The energy loss of relativistic projectiles in collisional one-component plasmas is analyzed within the method of moments. Both the canonical and non-canonical solutions of the Hamburger moment problem corresponding to five convergent power frequency moments of the electron plasma loss function are employed with the static, purely imaginary, Nevanlinna parameter with the imaginary part iqual to the collision frequency calculated within the Green-Kubo formalism in terms of static structure factors evaluated in the HNC approximation using the Deutsch effective potential.Thus we take into account the dissipation processes in the plasma. It is pointed out that the correlations only slightly influence the deviation of the stopping power with the relativistic corrections taken into account from the classical Bethe-Bohr-Larkin asymptotic form.

References

1 Bethe H. Zur theorie des durchgangs
schneller korpuskularstrahlen durch materie // Ann.
Phys. (Leipzig). – 1930. – Vol. 5. – P. 325–400.
2 Larkin A.I. Passage of particles through
plasma // Sov. Phys. JETP. – 1960. – Vol. 10.
– P. 186–191.
3 Young F.C., Mosher D., Stephanakis S.J.,
Goldstein S.A., and Mehlhorn T.A. Measurements
of Enhanced Stopping of 1-MeV Deuterons in
Target-Ablation Plasmas// Phys. Rev. Lett. – 1982.
– Vol. 49. – P. 549–553.
4 Belyaev G. et al. Measurement of the
Coulomb energy loss by fast protons in a plasma
target// Phys. Rev. E. – 1996. – Vol. 53. – P. 2701–
2707.
5 Golubev A. et al. Dense plasma
diagnostics by fast proton beams // Phys. Rev. E. –
1998. – Vol. 57 – p. 3363–3367.
6 Lindhard J. On the properties of a gas of
charged particles// Mat. Fys. Medd. K. Dan.
Vidensk. Selsk. – 1954. – Vol.28. – №8. – P. 1–57.
7 Arista N.R. and Brandt W. Energy loss and
straggling of charged particles in plasmas of all
degeneracies // Phys. Rev. A. – 1981. – Vol.23. –
P. 1898–1905.
8 Bret A. and Deutsch C. Dielectric
response function and stopping power of a twodimensional
electron gas// Phys. Rev. E. – 1996. –
Vol. 48. – P. 2994–3002; Morawetz K. and Röpke
G. Stopping power in nonideal and strongly
coupled plasmas// Phys. Rev. E. – 1996. – Vol. 54.
– P. 4134–4146.
9 Ortner J. and Tkachenko I. M. Stopping
power of strongly coupled electronic plasmas: Sum
rules and asymptotic forms// Phys. Rev. E. – 2001.
– Vol.63. – P. 026403 [11 pages].
10 Arista N R. Low-velocity stopping power
of semidegenerate quantum plasmas// J. Phys.
№эC: Solid State Physics. – 1985. – Vol. 18.
– № 26. – P. 5127–5134; Maynard G. and Deutsch
C. Energy loss and straggling of ions with any
velocity in dense plasmas at any temperature //
Phys. Rev. A. – 1982. – Vol.26. – P. 665–668;
Nagy I., László J., and Giber J. Dynamic local field
correction in the calculation of electronicstopping
power// Z. Phys. A. – 1985. – Vol.321
– P. 221–223; Yan X.Z., Tanaka S., Mitake S., and
Ichimaru S. Theory of interparticle correlations in
dense, high-temperature plasmas. IV. Stopping
power // Phys. Rev. A. – 1985. – Vol. 32.
– Р. 1785–1789; Tanaka S. and Ichimaru S.
Stopping power of degenerate electron liquid at
metallic densities // J. Phys. Soc. Jpn. – 1985. –
Vol. 54. – P. 2537–2542.
11 Barkas W.H., Dye J.N., and Heckman
H.H. Resolution of the Σ--Mass Anomaly // Phys.
Rev. Lett. – 1963. – Vol. 11. – P. 26–28; Nagy I.,
Arnau A., and Echenique P.M. Screening and
stopping of charged particles in an electron gas//
Phys. Rev. B. – 1993. – Vol. 48. – P. 5650–5652.
12 Mintsev V.B. et al. Proton radiography of
non-ideal plasma // 14th International Conference
on the Physics of Non-Ideal Plasmas: Book of
Abstracts. – Rostock, 2012. – P. 31.
13 Adamyan V.M., Tkachenko I.M.
Teplofizika Vysokikh Temperatur. – 1983. – Vol.
21. – P. 417–425. Tkachenko I.M., Arkhipov
Yu.V., Askaruly A. The Method of Moments and
its Applications in Plasma Physics. –Saarbrücken,
Germany:LAMBERT Academic Publishing, 2012.
– 126 p.
14 Meyer Th. and Tkachenko I. M. High-
Frequency Electrical Conductivity and Dielectric
Function of Strongly Coupled Plasmas// Contrib.
Plasma Phys. – 1985. – Vol. 25. – P. 437–448.
15 Adamyan V.M. and Tkachenko I.M.
'Dielectric conductivity of non-ideal plasmas'.
Lectures on physics of non-ideal plasmas,
part I, Odessa State University, Odessa, 1988, in
Russian; AdamyanV. M. and TkachenkoI.
M., Contrib. Plasma Phys. – 2003. – Vol.43.
– P.252.
16 Kugler A.A. Theory of the local field
correction in an electron gas// J. Stat. Phys. – 1975.
– Vol. 12. – P. 35–87.
17 Ichimaru S. Statistical plasma physics.
Vol. 2: Condensed plasmas.Boulder: Westview
Press, 2004. – 304 p.
18 Baus M., Hansen J.P., and Sjögren L.
Electrical conductivity of strongly coupled
hydrogen plasma// Phys. Lett. A. – 1981. – Vol.
82. – P.180–182.
19 Fisher I.Z. Statistical Theory of Liquids. –
Chicago: University of Chicago Press, 1964.
– 335 p.
20 Starikov K.V. and Deutsch C. Stopping of
relativistic electrons in a partially degenerate
electron fluid // Phys. Rev. E. – 2005. – Vol.71. –
P. 026407 [8 pages].

Downloads

How to Cite

Arkhipov, Y. V., Ashikbayeva, A. B., Askaruly, A., Davletov, A. E., Palací, D., & Tkachenko, I. M. (2013). Energy loss of relativistic projectiles in non-ideal electron liquids. International Journal of Mathematics and Physics, 4(1), 50–55. https://doi.org/10.1234/ijmph.v1i4.47

Issue

Section

Theoretical Physics and Plasma Physics