Soliton solutions of a generalized Klein–Gordon equation with power-law nonlinearity via the first integral method

Authors

  • S. Subhaschandra Singh Department of Physics, Imphal College, Imphal-795001, Manipur, India

DOI:

https://doi.org/10.26577/ijmph.2018.v9i2.268
        55 70

Abstract

This paper studies solitary wave solutions of a generalized nonlinear Klein-Gordon (KG) equation with power-law nonlinearity via the so-called first integral method. Using the method, some soliton solutions of the equation are obtained. The method is hereby shown to be an efficient and reliable mathematical tool for solving many nonlinear evolution equations arising in a number of problems in science and engineering.

          undefined   undefined                 Звуковая функция ограничена 200 символами     Настройки : История : Обратная связь : Donate Закрыть

Downloads

How to Cite

Singh, S. S. (2018). Soliton solutions of a generalized Klein–Gordon equation with power-law nonlinearity via the first integral method. International Journal of Mathematics and Physics, 9(2), 116–121. https://doi.org/10.26577/ijmph.2018.v9i2.268