Asymptotic convergence of the solution of the initial value problem for singularly perturbed higher-order integro-differential equation

Authors

  • M. K. Dauylbayev Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
  • M. Akhmet Middle East Technical University, Ankara, Turkey
  • A. E. Mirzakulova Abay Kazakh National Pedagogical University, Almaty, Kazakhstan
  • A. B. Uaissov Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/ijmph.2018.v9i1.246
        48 58

Abstract

 Abstract. The article is devoted to research the Cauchy problem for singularly perturbed higher-order linear integro-differential equation with a small parameters at the highest derivatives, provided that the roots of additional characteristic equation have negative signs. An explicit analytical formula of the solution of singularly perturbed Cauchy problem is obtained. The theorem about asymptotic estimate of a solution of the initial value problem is proved. The nonstandard degenerate initial value problem is constructed. We find the solution of the nonstandard degenerate initial value problem. An estimate difference of the solution of a singularly perturbed and nonstandard degenerate initial value problems is obtained. The asymptotic convergence of solution of a singularly perturbed initial value problem to the solution of the nonstandard degenerate initial value problem is established.

      G M T   Английский Испанский Итальянский Казахский Китайский Трад Китайский Упр Корейский Русский Турецкий Французский   Английский Испанский Итальянский Казахский Китайский Трад Китайский Упр Корейский Русский Турецкий Французский                 Звуковая функция ограничена 200 символами     Настройки : История : Обратная связь : Donate Закрыть

Downloads

How to Cite

Dauylbayev, M. K., Akhmet, M., Mirzakulova, A. E., & Uaissov, A. B. (2018). Asymptotic convergence of the solution of the initial value problem for singularly perturbed higher-order integro-differential equation. International Journal of Mathematics and Physics, 9(1), 50–59. https://doi.org/10.26577/ijmph.2018.v9i1.246