A numerucal numerical method for the restoration of the five diagonal symmetric matrices from the spectral data
Keywords:
differential equations, band matrix, spectral problems, eigenvalues, five-diagonal symmetric matrix.Abstract
In this work the possibility of restoration of real symmetrical five diagonal final matrixes using four numerically sequences is studied. Three from these four numerically sequences are interpreted as sets of eigenvalues of the considered matrix and else of two matrixes, obtained from considered matrix delet-ing some diagonal elements. The concrete formulas of construction of matrix elements using four sets of eigenvalues are obtained.References
1. Hochctadt H. On the construction of a Jacobi matrix from spectral date. Linear Algebra and its Applications, 8, 5(1974). – P.435 – 446.
2. Golinskij L.B., Kudryavtsev M. A. Return spectral problems for one class of the five-diagonal unitary matrixes // Dokl. of the Russian Academy of Sciences. 2008, - V.423. – № 1. – P. 11-18.
3. Godunov S.K., Kostin V.I., Mitchenko A.D. Vychislenie sobstvennogo vektora simmetricheskoj trehdiagonal'noj matricy // Sib. mat. zhurnal, –
1985. – T. 26. – № 5. – P.71-85.
4. Godunov S.K. Sovremennye aspekty linejnoj algebry,– Novosibirsk: Nauchnaja kniga, 1997,– P.390.
5. Voevodin V.V. Chislennye metody algebry. Teorija i algorifmy. – M.: Nauka, 1966. – 235 s.
6. Uilkinson Dzh. X. Algebraicheskaja problema sobstvennyh znachenij. – M.: Nauka, 1970. – 108 s.
7. Danilina N.I., Dubrovskaja N.S., Kvasha O.P., Smirnov G.L., Fekansov G.I. Chislennye metody. – M.: Vysshaja shkola, 1976. – P.368.
8. Matematicheskij jenciklopedicheskij slovar, – M.: Sovetskaja jenciklopedija, 1988. – P.847.
9. Bahvalov N.S. Chislennye metody. – M.: Nauka, 1973. – P.632.
10. Horn R. Dzhonson Ch. Matrichnyj analiz, – M.: Izd-vo «Mir», 1988. – P.206.
11. Ikramov H.D. Nesimmetrichnaja problema sobstvennyh znacheni. – M.: Nauka, 1991. – P.106.
12. Ikramov H.D. Chislennye metody linejnoj algebry. (Reshenie linejnyh uravnenij). – M.: Znanie, 1987. – P.241.
13. Markus M., Mink H. Obzor po teori matric i matrichnyh neravenstv. – M.: Nauka, 1972. – P. 34. 14. Ikramov H.D. Chislennye metody dlja simmetrichnyh linejnyh sistem. – M.: Nauka, 1988. – P.102.
15. Ikramov H.D. Vychislitel'nye metody linejnoj algebry. (Reshenie bol'shih razrezhennyh sistem uravnenij prjamymi metodami), – M.: Znanie. – 1989. – P.84.
16. Parlett B. Simmetrichnaja problema sobstvennyh znachenij. – M.: Mir, 1983. – P.76.
2. Golinskij L.B., Kudryavtsev M. A. Return spectral problems for one class of the five-diagonal unitary matrixes // Dokl. of the Russian Academy of Sciences. 2008, - V.423. – № 1. – P. 11-18.
3. Godunov S.K., Kostin V.I., Mitchenko A.D. Vychislenie sobstvennogo vektora simmetricheskoj trehdiagonal'noj matricy // Sib. mat. zhurnal, –
1985. – T. 26. – № 5. – P.71-85.
4. Godunov S.K. Sovremennye aspekty linejnoj algebry,– Novosibirsk: Nauchnaja kniga, 1997,– P.390.
5. Voevodin V.V. Chislennye metody algebry. Teorija i algorifmy. – M.: Nauka, 1966. – 235 s.
6. Uilkinson Dzh. X. Algebraicheskaja problema sobstvennyh znachenij. – M.: Nauka, 1970. – 108 s.
7. Danilina N.I., Dubrovskaja N.S., Kvasha O.P., Smirnov G.L., Fekansov G.I. Chislennye metody. – M.: Vysshaja shkola, 1976. – P.368.
8. Matematicheskij jenciklopedicheskij slovar, – M.: Sovetskaja jenciklopedija, 1988. – P.847.
9. Bahvalov N.S. Chislennye metody. – M.: Nauka, 1973. – P.632.
10. Horn R. Dzhonson Ch. Matrichnyj analiz, – M.: Izd-vo «Mir», 1988. – P.206.
11. Ikramov H.D. Nesimmetrichnaja problema sobstvennyh znacheni. – M.: Nauka, 1991. – P.106.
12. Ikramov H.D. Chislennye metody linejnoj algebry. (Reshenie linejnyh uravnenij). – M.: Znanie, 1987. – P.241.
13. Markus M., Mink H. Obzor po teori matric i matrichnyh neravenstv. – M.: Nauka, 1972. – P. 34. 14. Ikramov H.D. Chislennye metody dlja simmetrichnyh linejnyh sistem. – M.: Nauka, 1988. – P.102.
15. Ikramov H.D. Vychislitel'nye metody linejnoj algebry. (Reshenie bol'shih razrezhennyh sistem uravnenij prjamymi metodami), – M.: Znanie. – 1989. – P.84.
16. Parlett B. Simmetrichnaja problema sobstvennyh znachenij. – M.: Mir, 1983. – P.76.
Downloads
How to Cite
Eleuov, A. A., Tungatarov, N. N., & Yakhiyayev, F. K. (2015). A numerucal numerical method for the restoration of the five diagonal symmetric matrices from the spectral data. International Journal of Mathematics and Physics, 6(1), 33–41. Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/115
Issue
Section
Astronomy and Space Research