Magnetic stabilization of the rotational motion of the nanosatellite in inclined orbit
Keywords:
Passive magnetic stabilization, nanosatellite, rotational motion, geomagnetic field, direct dipole model, inclined orbit.Abstract
In this paper the problem of passive magnetic stabilization of the otational motion of the nanosatellite in inclined orbit is considered.The effect of the gravitational torque on this stabilization is taken into account. Passive magnetic stabilization allows the nanosatellite to stabilize by keeping one axis of the spacecraft aligned with the field lines of the Earth magnetic field in orbit. It is assumed that the geomagnetic field is modeled by direct dipole. Rotational motion of nanosatellite is described by dynamic and kinematic Euler equations, which are solved by the fourth-order explicit Runge-Kutta method. The results of computational experiments show that for orbits of inclinations over i = 150, passive magnetic stabilization is not effective to stabilize nanosatellites. An analysis of obtained numerical results show that an influence of the geomagnetic field increases for the polar orbit. It is shown that for near equatorial orbits of inclinations under 150, passive magnetic stabilization is most effective to stabilize nanosatellites. The results of computational experiments show that for orbits of inclinations over 150, passive magnetic stabilization is not effective to stabilize nanosatellites and the perturbations caused by the gravitational torque tends to increase. In this way, this technique is not enough effective for satellite's orbits with an inclination of more 150. In order to achieve desired stabilization, one needs to take into account damping moments.References
1. Harris M., Lyle Eds R. Spacecraft gravitational torques // NASA Report. – 1969. – No. SP-8024.
2. Zhilisbayeva K., Ismailova A., Tulekenova D. On Influence of the Gravitational Moment on the Magnetic Stabilization of the CubeSat in the
Geomagnetic Field // 5th European CubSat Symposium: Book of bstracts. – Brussels, Belgium, 2013. – P.54.
3. Miranda F. Guidance Stabilization of Satellites Using the Geomagnetic Field // International Journal of Aerospace Engineering. – 2012. – P.9.
4. Beleckij V.V., Hentov A.A. Vrashhatel'noe dvizhenie namagnichennogo sputnika. – M.: Nauka, 1980. – P.286.
5. Park G., Seagraves S., McClamroch N. H. A Dynamic Model of a assive Magnetic Attitude Control System for the RAX Nanosatellite // AIAA
Guidance, Navigation, and Control Conference. – Toronto, Ontario Canada, 2010.
6. Bushenkov V.A., Ovchinnikov M.Yu. Smirnov G.V. Attitude stabilization of satellite by magnetic soils // Acta Astronautica. – 2002. – Vol. 50. – №12. – P. 721-728.
7. Jayaram S., Pais D., Model-based Simulation of Passive Attitude Control of SLUCUBE-2 Using Nonlinear Hysteresis and Geomagnetic Models // International Journal of Aerospace Sciences. – 2012. – Vol. 4. – P. 77-84.
8. Beleckij V.V. Dvizhenie iskusstvennogo sputnika otnositel'no centra mass. – M.: Nauka, 1965. – P.416.
9. Rauschenbakh B.V., Ovchinnikov M.Yu., McKenna-Lawlor S. Essential Spaceflight Dynamics and Magnetospherics. Springer. – 2003. – P. 247-273.
10. Ismailova A., Zhilisbayeva K. Passive Magnetic Stabilization of the Rotational Motion of the Satellite in its Inclined Orbit // Applied
Mathematical Sciences. – 2015. – Vol. 9. – № 16. – P. 791- 802.
11. Burden R.L., Faires J.D. Numerical Analysis. – 4th edition. – PWS-Kent, Boston, 1981.
2. Zhilisbayeva K., Ismailova A., Tulekenova D. On Influence of the Gravitational Moment on the Magnetic Stabilization of the CubeSat in the
Geomagnetic Field // 5th European CubSat Symposium: Book of bstracts. – Brussels, Belgium, 2013. – P.54.
3. Miranda F. Guidance Stabilization of Satellites Using the Geomagnetic Field // International Journal of Aerospace Engineering. – 2012. – P.9.
4. Beleckij V.V., Hentov A.A. Vrashhatel'noe dvizhenie namagnichennogo sputnika. – M.: Nauka, 1980. – P.286.
5. Park G., Seagraves S., McClamroch N. H. A Dynamic Model of a assive Magnetic Attitude Control System for the RAX Nanosatellite // AIAA
Guidance, Navigation, and Control Conference. – Toronto, Ontario Canada, 2010.
6. Bushenkov V.A., Ovchinnikov M.Yu. Smirnov G.V. Attitude stabilization of satellite by magnetic soils // Acta Astronautica. – 2002. – Vol. 50. – №12. – P. 721-728.
7. Jayaram S., Pais D., Model-based Simulation of Passive Attitude Control of SLUCUBE-2 Using Nonlinear Hysteresis and Geomagnetic Models // International Journal of Aerospace Sciences. – 2012. – Vol. 4. – P. 77-84.
8. Beleckij V.V. Dvizhenie iskusstvennogo sputnika otnositel'no centra mass. – M.: Nauka, 1965. – P.416.
9. Rauschenbakh B.V., Ovchinnikov M.Yu., McKenna-Lawlor S. Essential Spaceflight Dynamics and Magnetospherics. Springer. – 2003. – P. 247-273.
10. Ismailova A., Zhilisbayeva K. Passive Magnetic Stabilization of the Rotational Motion of the Satellite in its Inclined Orbit // Applied
Mathematical Sciences. – 2015. – Vol. 9. – № 16. – P. 791- 802.
11. Burden R.L., Faires J.D. Numerical Analysis. – 4th edition. – PWS-Kent, Boston, 1981.
Downloads
How to Cite
Zhilisbayeva, K. S., & Ismailova, A. Z. (2015). Magnetic stabilization of the rotational motion of the nanosatellite in inclined orbit. International Journal of Mathematics and Physics, 6(1), 22–29. Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/113
Issue
Section
Astronomy and Space Research