Finite-size effects in the interaction of dust particles in a plasma

Authors

  • A. Askaruly IETP, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Yu.V. Arkhipov IETP, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • А.E. Davletov IETP, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • L.T. Yerimbetova IETP, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Keywords:

Dusty plasma, density-response formalism, finite-size effects, random-phase approximation.

Abstract

A pseudopotential model of interaction between dust particles is proposed to simultaneously take into account the nite-size and the screening effects. The consideration starts from the assumption that the dust particles are hard balls such that the interparticle distances are measured between their surfaces rather than between their centers. After that to derive the screened interaction potential between dust particles the density-response formalism is used in which the dielectric function of the plasma is taken in the form of the random-phase approximation. This procedure provides a simple analytic expression for the intergrain potential that numerically differs from the well-known Debye-Huckel (Yukawa) potential at small separations.

References

1. Forsberg M., Brodin G., Marklund M., Shukla P.K., Moortgat J. Nonlinear interactions between gravitational radiation and modified Alfvén modes in astrophysical dusty plasmas // Phys. Rev. D – 2006. – Vol. 74. – 064014.
2. Malmrose M.P., Marscher A.P., Jorstad S.G., Nikutta R., Elitzur M. Emission from Hot Dust in the infrared Spectra of Gamma-ray Bright Blazars // Astrophys. J. – 2011. – Vol. 732. – P. 116.
3. Seok J.Y., Koo B.-C., Hirashita H. Dust Cooling in Supernova Remnants in the Large Magellanic Cloud // Astrophys. J. – 2015. – Vol. 807. – P. 100.
4. Izvekova Yu.N., Popel S. I. Charged Dust Motion in Dust Devils on Earth and Mars // Contrib. Plasma Phys. – 2016. – Vol. 56. – P. 263.
5. Heidemann R.J., Couëdel L., Zhdanov S.K., Sütterlin K.R., Schwabe M., Thomas H.M., Ivlev A.V., Hagl T., Morfill G.E., Fortov V.E., Molotkov V.I., Petrov O.F., Lipaev A.I., Tokarev V., Reiter
87 International Journal of Mathematics and Physics 7, №1, 83 (2016) Askaruly A. et al. Th., Vinogradov P. Comprehensive experimental study of heartbeat oscillations observed under microgravity conditions in the PK-3 Plus laboratory on board the International Space Station // Phys. Plasmas. – 2011. – Vol. 18. – 053701.
6. Fedoseev A.V., Sukhinin G.I., Abdirakh-manov A.R., Dosbolayev M.K., Ramazanov T.S. Voids in Dusty Plasma of a Stratified DC Glow Discharge in Noble Gases // Contrib. Plasma Phys. – 2016. – Vol. 56. – P. 234.
7. Szetsen L., Hsiu-Feng C., Chien-Ju C. Spectroscopic study of carbonaceous dust particles grown in benzene plasma // J. Appl. Phys. – 2007. – Vol. 101. – 113303.
8. Kundrapu M., Keidar M. Numerical simulation of carbon arc discharge for nanoparticle synthesis // Phys. Plasmas – 2012. – Vol. 19. – 073510.
9. Keidar M., Shashurin A., Volotskova O., Stepp M. A., Srinivasan P., Sandler A., Trink B. Cold atmospheric plasma in cancer therapy // Phys. Plasmas – 2013. – Vol. 20. – 057101.
10. Walk, R. M., Snyder, J. A., Scrivasan, P., Kirch, J., Diaz, S. O., Blanco F. C., Shashurin A., Keidar M., Sandler A. D. Cold atmospheric plasma for the ablative treatment of neuroblastoma // J. Pediatr. Surg. – 2013. – Vol. 48. – P. 63.
11. Winter J. Dust: A new challenge in nuclear research? // Phys. Plasmas, – 2000. – Vol. 7. – P. 3862.
12. Castaldo C., Ratynskaia S., Pericolli V., de Angelis U., Rypdal K., Pieroni L., Giovannozzi E., Maddaluno G., Marmolino C., Rufoloni A., Tuccillo A., Kretschmer M., Morfill G.E. Diagnostics of fast dust particles in tokamak edge plasmas // Nucl. Fusion – 2007. – Vol. 47, – P. L5.
13. Kokura H., Yoneda S., Nakamura K., Mitsuhira N., Nakamura M. and Sugai H. Diagnostic of surface wave plasma for oxide etching in comparison with inductive RF plasma // Jap. J. Appl. Phys. – 1999. – Vol. 38. – P. 5256.
14. Kersten H., Deutsch H., Stoffels E., Stoffels W.W., Kroesen G.M.W., Hippler R. Micro-disperse particles in plasmas: From disturbing side effects to new applications // Contrib. Plasma Phys. – 2001. – Vol. 41. – P. 598.
15. Khrapak S., Morfill G. Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force // Contrib. Plasma Phys. – 2009. – Vol. 49. – P. 148.
16. Shukla P.K., Eliasson B. Fundamentals of dust-plasma interactions // Rev. Nod. Phys. – 2009. – Vol. 81. – P. 25.
17. Bonitz M., Henning C., Block D. Complex plasmas: a laboratory for strong correlations // Rep. Prog. Phys. – 2010. – Vol. 73. – 066501.
18. Vladimirov S.V., Ishihara O. On plasma crystal formation // Phys. Plasmas – 1996. – Vol. 3. – P. 444.
19. Morfill G.E., Thomas H. Plasma crystal // J. Vac. Sci. Technol. A – 1996. – Vol. 14, – P. 490.
20. Kählert H., Bonitz M. How Spherical Plasma Crystals Form // Phys. Rev. Lett. – 2010. – Vol. 104. – 015001.
21. Vaulina O.S., Vladimirov S.V., Petrov O.F., Fortov V. E. Criteria for Phase‐Transitions in Yukawa Systems (Dusty Plasma) // AIP Conf. Proc. – 2002. – Vol. 649. – P. 471.
22. Kundu M., Avinash K., Sen A., Ganesh R. On the existence of vapor-liquid phase transition in dusty plasmas // Phys. Plasmas – 2014. – Vol. 21. – 103705.
23 Kalman G., Hartmann P., Donko Z., Golden K.J., Kyrkos S. Collective modes in two-dimensional binary Yukawa systems // Phys. Rev. E – 2013. – Vol. 87. – 043103.
24 Khrapak S.A., Thomas H.M. Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas // Phys. Rev. E – 2015. – Vol. 91. – 033110.
25 Khrapak S.A., Thomas H.M. Practical expressions for the internal energy and pressure of Yukawa uids // Phys. Rev. E – 2015. – Vol. 91. – 023108.
26 Baimbetov F.B., Davletov A.E., Kudyshev Zh.A., Mukhametkarimov E.S. New Model of Dusty Plasma Particles Interaction // Contrib. Plasma Phys. – 2011. – Vol. 51. – P. 533.
27 Davletov A.E. A new model of intergrain interaction in dusty plasmas // J. Phys. A: Math. Gen. – 2006. – Vol. 39. – P. 4555.
28 Ichimaru S. Basic Principles of Plasma Physics (Benjamin/Cumming, Reading, 1973).
29 Arkhipov Yu.V., Askaruly A., Ballester D., Davletov A.E., Tkachenko I.M., Zwicknagel G.. Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach // Phys. Rev. E – 2010. – Vol. 81. – 026402.
30 Arkhipov Yu.V., Ashikbayeva A.B., Askaruly A., Davletov A.E., Tkachenko I.M. Optical Properties of Kelbg-Pseudopotential- Modelled Plasmas // Contrib. Plasma Phys. – 2013. – Vol. 53. – P. 375.

Downloads

Published

2016-10-07

How to Cite

Askaruly, A., Arkhipov, Y., Davletov А., & Yerimbetova, L. (2016). Finite-size effects in the interaction of dust particles in a plasma. International Journal of Mathematics and Physics, 7(1). Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/164

Issue

Section

Theoretical Physics and Plasma Physics