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1 Introduction

Mathematical models of gravitating point bodies 
are well studied Duboshin [1]. Nowadays in 
astronomy and in astrophysics the investigations of 
problems of dynamics of non-stationary gravitating 
non-point bodies are actual Eggleton [2], Omarov 
[3], Omarov [4], Minglibayev [5].

Let us note some works on the dynamics of 
gravitating systems with variable masses close to the 
subject of the present work. In the works Lukyanov
[6], Bekov [7], Letelier and Silva [8], Abouelmagd et 
al. [9] interesting questions on the restricted three-
body-point problem with variable masses are studied.
The problem has primarily been studied when the 
masses of the primary bodies change according to the 
Meshchersky law at the same rate Bekov [10],
Lukyanov [11], Rystygulova [12]. In Suraj et al. [13], 
the restricted three-body problem with variable mass 
is investigated, focusing on the system's dynamics 
when one of the bodies loses or gains mass according 
to Jeans' law. Article Abouelmagd and Guirao [14] is 
dedicated to studying the perturbed three-body 
problem where the bodies are considered as oblate 

spheroids. The main focus is on finding libration 
points and their linear stability under the influence of 
Coriolis and centrifugal forces. Periodic orbits 
around these points are also studied. In Mittal et al. 
[15], the three-body problem with variable mass and 
small thrust is considered. The authors introduce the 
concept of artificial equilibrium points, created by a 
constant small thrust to balance gravitational and 
centrifugal forces in the system. This study is based 
on the law of mass change according to Jeans, where 
the spacecraft loses mass over time. Equations of 
motion were derived using Meshchersky 
transformations, and the stability of these points was 
analyzed. In Abouelmagd and Mostafa [16], within 
the framework of the restricted three-body problem 
with variable masses, the motion of celestial bodies 
where the third body changes its mass according to 
Jeans' law is investigated. In Abouelmagd et al. [17], 
a new model arising from the restricted three-body 
problem with anisotropic mass changes is 
considered. This mass change occurs when mass 
leaves or enters the system from points on the 
infinitesimally small body. The model has interesting 
applications for studying small objects such as 
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cosmic dust, as well as for future space colonization 
and parking of spacecraft. In Celletti and Vartolomei
[18], classical perturbation methods are applied to the 
dynamics of space debris, which can be considered a 
small body within the restricted three-body problem 
framework. Mass variability occurs naturally in 
many celestial bodies, such as stars, asteroids, 
comets, or artificial satellites, which lose or gain 
mass during their motion [19]. Accounting for mass 
variability can significantly alter orbital trajectories 
[20], especially when reactive forces are involved.
When considering a system with variable masses, 
especially in the context of the three-body problem, 
it is important to account for how mass changes 
influence the equilibrium points and orbits of the 
system. In Huda et al. [21], equilibrium points were 
studied in a modified restricted three-body problem 
where one of the primary masses is an elongated 
body. It was found that parameter changes, including 
variable mass, shift the positions of equilibrium 
points and affect their stability.

There are many circumbinary planetary systems 
in the NASA database, of which more than 250 
systems consist of two stars and one planet NASA
[22]. The dynamical evolution of a system with two 
stars and one planet of variable masses can be studied 
in the framework of the restricted three-body 
problem with variable masses. In Minesaki [23], the 
restricted three-body problem is considered, where 
two massive points and a massless point attract each 
other according to Newton’s law, and the Hill regions 
pulsate. In these regions, the massless point moves 
inside closed regions surrounding only one of the 
massive points. The work of Langford and Loren [24] 
is dedicated to studying the dynamics of planets 
orbiting close binary stars within the framework of 
the restricted three-body problem.

In this paper we study the problem of 
translational-rotational motion of a non-stationary 
axisymmetric small body in the gravitational field of 
two spherical bodies of variable mass in the 
framework of the restricted three-body problem.

2 The physical statement of the problem and 
assumptions

We considered the motion of three bodies 1 2,P P
and 3P with variable masses ( )1 1 ,m m t=

( )2 2 ,m m t= ( )3 3m m t= and varying 

characteristic dimensions 1 1( ),ll t= 2 2 ( ),ll t=

3 3 ( )l l t= , interacting according to Newton's law. Of 
these, the first two bodies are primary massive 
spherically symmetric bodies of variable mass, 
whose motion is determined by the problem of two 
bodies with variable masses. The third small mass 
body is an axisymmetric body of variable mass, 
variable size, and variable compression. 

The physical problems of such a variable mass 
body problem, in particular, can be 

a) The translational-rotational motion of a pla-
net in the Newtonian gravitational field of two stars

b) The translational-rotational motion of an 
asteroid in the Newtonian gravitational field of a star 
and a planet 

c) The translational-rotational of an artificial 
celestial body in the Newtonian gravitational field of 
a planet and its natural satellite.

To obtain a mathematical model of such physical 
problems, we adopt the following assumptions:

1. Moments of inertia of the second order of the 
considered bodies are variable and known functions 
of time 

( ) ( ) ( ), ,   ,   i i i i i iA A t B B t C C t= = =
  1,  2,  3i =                            (1)

2. The problem is set in a restricted formulation 

3 1,m m<< 3 2m m<< ,
1 2m m≥ . (2)

In other words, a non – stationary axisymmetric 
body of small mass does not affect the motion of two 
primary spherical bodies with variable masses.

3. Masses and characteristic dimensions of 
bodies known functions of time change with different 
specific rates

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2 3

1 2 3

1 2 3

1 2 3

,

.

m t m t m t
m t m t m t

l t l t l t
l t l t l t

≠ ≠

≠ ≠

  

  

               (3) 

4. Bodies 1 2,P P are spherically symmetric 

( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

    ,  

      

A t B t C t

A t B t C t

= =

= =
             (4)
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5. The axisymmetric shape of a small non-
stationary body 3P remains unchanged during
evolution

( ) ( ) ( )3 3 3  .A t B t C t≠=               (5)

6. The small body has an equatorial plane of 
symmetry. Three mutually perpendicular planes 
passing through the center of inertia of an 
axisymmetric non-stationary body define its 
principal axes of inertia. 

7. The masses of the bodies vary both 
isotropically and non-isotropically. In the case of 
non-isotropic vary of masses, reactive forces arise.
The total reactive forces in case of non-isotropic 
change of masses of bodies are not equal to zero and 
are applied to the center of inertia of the 
corresponding bodies. Then additional reactive 
moments are equal to zero: 

0, 0.reac reacF M≠ =
 

                  (6)

8. Let's limit to an approximate expression of 
the second zonal harmonic force function

12 23 31U U U U= + +                       (7)

1 2
12

12

= ,m mU f
R

 
 
 

                         (8)

( )
2

2 3 23
23 3 3 3 3

23 23

1 3= ,
2

m mU f fm C A
R R

γ  −
+ − 

 

( )
2

1 3 31
31 3 3 3 3

31 31

1 3= .
2

m mU f fm C A
R R

γ  −
+ − 

 
(9)

Under such celestial-mechanical assumptions, 
the formulation of a new problem is formulated. At 
the same time, the laws of mass change and moments 
of inertia uniquely determine the evolution of these 
non-stationary bodies and additional internal degrees 
of freedom do not appear. The translational motion of 
the center of mass of two primary bodies with 
variable masses and the translational-rotational 
motion of a non – stationary axisymmetric body in 
joint consideration are studied.

Note that under such assumptions, the 
translational-rotational motion of a non-stationary 
axisymmetric body in a central non-stationary field 
of attraction was considered in Bizhanova et al. [25]
within the framework of the two-body problem. 

Similar assumptions for three non-stationary 
axisymmetric bodies were used in Minglibayev and 
Kushekbay [26] to study the secular evolution in the 
three-body problem in the unrestricted formulation.

However, in contrast to Bizhanova et al. [25], 
Minglibayev and Kushekbay [26] in this paper we 
have considered the translational-rotational motion 
of a non-stationary axisymmetric body in a non-
stationary gravitational field of two spherical bodies 
in the framework of the restricted three-body 
problem. 

3 Equations of translational-rotational motion 
of the center of mass in absolute coordinate system

In Ibraimova and Minglibayev [29], the 
equations of translational motion of two spherically 
symmetric non-stationary bodies in the framework of 
the two-body problem with variable masses were 
derived from the generalised Meshchersky equations 
Meshchersky [27], Markeev [28]

11 1 12 1reacRm R grad U F= +

 

 , 1 2
12

12

= ,m mU f
R

 
 
 

(10)

1 11 11 12 12reacF m V m V= +
  

  ,

11 11 1 12 12 1,V u R V u R= − = −
   

 

               (11)

( )

( ) ( ) ( )
0 0

1 1 1 11 12

1 0 11 12

t t

t t

m m t m m

m t m dt m dt

= − + =

= − +∫ ∫ 

           (12)

Here, the notation corresponds to the conventions 
adopted in Ibraimova and Minglibayev [29].

Under the assumptions (1)-(8), the equations of 
rotational motion in Euler variables of body 1P in 
absolute coordinate system in the considered 
formulation are as follows 

( ) ( )

( )

1 1 1 1

1 1

0, 0,

0,

d dA p B q
dt dt

d C r
dt

= =

=

         (13)
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

sin sin cos ,

sin cos sin ,
cos

p

q
r

ψ θ ϕ θ ϕ

ψ θ ϕ θ ϕ
ψ θ ϕ

= +

= −
= +









 

          (14)

Similarly, we obtained the translational-
rotational motion of a non-stationary spherically 
symmetric body 

3P

22 2 21 2reacRm R grad U F= +

 

 ,

2 1
21

21

= ,m mU f
R

 
 
 

                       (15)

2 21 21 22 22reacF m V m V= +
  

  ,

21 21 2 22 22 2,V u R V u R= − = −
   

 

            (16)

( )

( ) ( ) ( )
0 0

2 2 0 21 22

2 0 21 22

t t

t t

m m t m m

m t m dt m dt

= − + =

= − +∫ ∫ 

          (17)

( ) ( )

( )

2 2 2 2

2 2

0, 0,

0,

d dA p B q
dt dt

d C r
dt

= =

=

(18)

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

sin sin cos ,

sin cos sin ,
cos

p

q
r

ψ θ ϕ θ ϕ

ψ θ ϕ θ ϕ
ψ θ ϕ

= +

= −
= +









 

(19)

The translational-rotational motion of a non-
stationary axisymmetric small body 

3P , accordingly, 
had the form

33 3 3 3reacRm R grad U F= +

 



               (20)

( )

1 2
3 3

31 32

2 2
23 31

3 3 3 3 3
23 31

=

1 3 1 31 ,
2

m mU fm
R R

fm C A
R R
γ γ

 
+ + 

 
 − −

+ − + 
 



(21)

3 31 31 32 32reacF m V m V= +
  

  ,

31 31 3 32 32 3,V u R V u R= − = −
   

 

           (22)

( )

( ) ( ) ( )
0 0

3 3 0 31 32

3 0 31 32

t t

t t

m m t m m

m t m dt m dt

= − + =

− +∫ ∫ 

        (23)

( ) ( )

( ) ( )

( )

3 3 3 3 3 3

3
3 3

3 3 3 3

3 3 3 3 3 3

3
3 3

3 3 3 3

3 3

sincos cos ,
sin

coscos sin ,
sin

0.

d A p A C q r
dt

U U U

d A q C A r p
dt

U U U

d C r
dt

ϕθ ϕ
ψ ϕ θ θ

ϕθ ϕ
ψ ϕ θ θ

− − =

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

− − =

 ∂ ∂ ∂
= − − ∂ ∂ ∂ 

=

(24)

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3

sin sin cos ,

sin cos sin ,
cos

p

q
r

ψ θ ϕ θ ϕ

ψ θ ϕ θ ϕ
ψ θ ϕ

= +

= −

= +









 

         (25)

jR


is the radius vector of the center of mass 

of the bodies, ijR


are the mutual distances between 
the centers of mass of the bodies, f is the 
gravitational constant.

For further convenience, we have rewritten the 
equations of translational motion of the three bodies 
under consideration in the form

11 12 1
1

1
reacRR grad U F

m
= +

 



, 2
12

12

= ,mU f
R

 
 
 

(26)

22 21 2
2

1
reacRR grad U F

m
= +

 



, 1
21

21

= ,mU f
R

 
 
 

(27)

3

*
3 3

3

1
reacRR grad U F

m
= +

 



 ,

( )

* 1 2

31 32

2 2
23 31

3 3 3 3
23 31

=

1 3 1 31 ,
2

m mU f
R R

f C A
R R
γ γ

 
+ + 

 
 − −

+ − + 
 



(28)
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Equations (26)-(28) describe the problem under 
consideration in the absolute coordinate system.

We will assume that the reactive forces are 
applied at the centers of the respective non-stationary 
bodies, as noted by Lukyanov [30].

4 Equations of translational-rotational motion 
in relative coordinate system

Proceeding from the equations of motion in the 
absolute coordinate system (26)-(28), we obtain the 
equation of motion in the relative coordinate system 
with the origin at the center of the more massive body 

1P . The equation of motion of the two primary 
bodies problem has the form

12 12 2 112
2 1

1 1= reac reacRR grad U F F
m m

+ −

  



 ,

1 2
12

12

m mU f
R
+

=                       (29)

The rotational motion of the two primary 
spherical bodies is determined from simple equations 
(13)-(14) and (18)-(19), therefore, in the future, the 
rotational motion of the two primary spherical bodies 
will be considered known.

In relative coordinates, the equations of motion 
of a body with a small mass, in the field of attraction 
of two primary bodies, can be written in the following 
form 

*
13 3 113

3 1

1 1= reac reacRR grad U F F
m m

+ −

  



 , (30)

12 2 1 13 3 1,R R R R R R= − = −
     

.           (31)

The rotational motion of a non-stationary 
axisymmetric body 3P is determined by equations 
(24)-(25), but they now refer to a relative coordinate 
system.

5 Equations of motion in the barycentric 
coordinate system

5.1 Determination of the barycenter motion in 
the absolute coordinate system

Let us denote the radius of the vector of the three 
bodies under consideration in the barycentric 

coordinate system by 1r


, 2r


and 3r


, respectively. In 
order to determine the motion of the barycenter, we 
need to know the relative motion of the two primary 
spherical bodies with variable masses in the relative 
coordinate system. 

The relative equation of motion of the two-body 
problem is defined by equations (31), which we will 
rewrite in the form of

( ) 12
12 1 2 123

12

,reac
rr f m m F
r

= − + +








12 2 1 12r R R R= − =
  



.                      (32)

The motion of the barycenter is determined by the 
known formula [1], [5]

1 1 2 2 1
1

1 2 1 2

2
2 1 1 2 2

1 2

,

m R m R mR R
m m m m
m R R R

m m
ν ν

+
= = +

+ +

+ = +
+

 

 

  

(33)

2 2
2

1 2

m m
m m m

ν = =
+

, 1 1
1

1 2

m m
m m m

ν = =
+

,

1 2m m m= +                      (34)

Differentiating twice the expressions (33), we 
obtain

1 1 1 1 1 1

2 2 2 2 2 2

2

2 .

R R R R

R R R

ν ν ν

ν ν ν

= + + +

+ + +

   

  

 

  

 

 

             (35)

In equation (35) we substitute formulas (26), (27)
and considering 1 2 12 2 1 12,R R r R R rν ν= − = +

   

 

, we
obtain 

1 2 12 1 2 12 2 12

12
1 2 1 2 1 123

12 1

12
2 1 12 1 12 2 1 23

12 2

2

1

12 .

reac

reac

R R r R r r

rfm F R r
r m

rR r r fm F
r m

ν ν ν ν ν

ν ν ν

ν ν ν ν

  = − + − − +    
 

 + + + + +   
 

  + + + + − +     

  

  

 



  



 







 

 





 

(36)
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Grouping the coefficients with the same values, 
we obtain

( ) ( )
( ) ( )

( ) ( )

1 2 2 1 1 2 12

1 2 2 1 1 2 12

12
2 1 1 2 12 1 2 2 1 3

12

1 2
1 2

1 2

2 2

2

,реак реак

R R r

R r
rr f m m
r

F F
m m

ν ν ν ν ν ν

ν ν ν ν ν ν

ν ν ν ν ν ν

ν ν

= + + − +

+ + + − +

+ − + − +

+ +

 





   







     







 

 

(37)

In the right part of the equation (37) the 
expressions in brackets after calculations are 
considerably simplified 

( )

( )

( ) ( )

1 2
1 2 1 2

2 2

1 2 1 22 2

1 2
1 2 2 1 2 1

1 0,

1 0,

0,

m md d
dt dt m m

d m d
dt m dt
d d
dt dt

m mm m m m
m m

ν ν ν ν

ν ν ν ν

ν ν

 + = + = + = 
 

 = = = 
 

+ = + = =

− = − =

 

 

(38)

1 2 2 1
2 1 1 2 2 ,m m m m A

m
ν ν ν ν −

− = =
 

  (39)

[ ]

[ ]

2 1 1 2 1 2 2 12

2 1 1 23

1

2 .

m m m m
m

m m m m m B
m

ν ν ν ν− = − +

+ − =

   

  

         (40)

Then finally we obtain the equation of motion of 
the barycenter of two primary spherical bodies with 
variable masses in the form

12 12 1 2
12 ,reac reacR Br Ar F F
m
 = + + + 

  

 



 (41)

5.2 Equation of translational-rotational motion 
of two primary bodies and small body with variable 
masses in barycentric coordinate system

Considering that in the barycentric coordinate 
system 

1 1 2 2 0m r m r+ =
 

, 12 2 1r r r= −
  

           (42)

we obtain

1 2 12 ,r rν= −
 

2 1 12 ,r rν=                     (43)

Differentiating formulas (43), we obtain 
equations of motion of two primary bodies 1P and 

2P in barycentric coordinate system 

3 1
1 2 1 1 1 1 123

1

.reac
rr fm A r B r F
r

ν= − + + +




  

  (44)

2
2 2 2

1 1 2
2 2 2

2
12 1 2

1

2 , 2 ,

1
reac reac reac

A B

F F F
m m

ν ν ν
ν ν ν

ν

 
= = − 

 

= −

  

  

3 2
2 1 2 2 2 2 213

2

.reac
rr fm A r B r F
r

ν= − + + +




  

  (45)

2
1 1 1

2 2 2
1 1 1

1
21 2 1

2

2 , 2 ,

1
reac reac reac

A B

F F F
m m

ν ν ν
ν ν ν

ν

 
= = − 

 

= −

  

  

The equations of a small non-stationary 
axisymmetric body in the barycentric coordinate 
system are obtained from the following relations 

3 3r R R= −
 



, 3 3r R R= −
 



 

 .             (46)

Considering the differential equation of motion 
of a small body in absolute coordinate system (28)
and the derived equation of motion of the barycenter
of two primary bodies (41) we obtain

3

*
3 3

3

12 12 1 2

1

12

reacR

reac reac

r grad U F
m

Br Ar F F
m

= + −

  − + + +   










 

 



(47)

Equations (47) describe the motion of a non –
stationary axisymmetric small body in a barycentric 
coordinate system in the Newtonian gravitational 
field of two primary spherically symmetric bodies 
with variable masses. 
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The equations of rotational motion of the body 

3P around the center of mass in the absolute
coordinate system retain the form (24)-(25), but these 
equations already refer to the barycentric coordinate 
system. 

6 Two different systems of differential 
equations of the considered problem in 
barycentric coordinate system

Note that the obtained two primary body 
equations (44)-(45) and the equations of motion of an 
axisymmetric non – stationary small body (47) are 
not independent. By the center-of-mass invariant 
(42), it is sufficient to consider one of the two 
equations (44)-(45) together with equation (47). 
Below we will write them in the form of a system of 
joint differential equations.

6.1 System of differential equations of motion of 
bodies 1P and 3P in barycentric coordinate system

From equations (44) and (47), considering (43), 
we obtain the following system of independent 
equations

1
1 2 1 1 1 1 123

1

.reac
rr fm A r B r F
r

ν= − + + +




  

  (48)

3

*
3 13 1 13 1 31reacrr grad U A r B r F= + + +



  

 
 (49)

2
13 13 2

2 2 2

31 3 1 2
3

2 , 4 ,

1 1 ,reac reac reac reac

A BA B A

F F F F
m m

ν
ν ν ν

= = −

 = − + 



   

(50)

Note that in the case of constant masses the 
obtained differential equations of motion transform 

into the known equations obtained by other authors 
Krasilnikov [31]. If all three bodies are spherically 
symmetric and with constant masses, we come to the 
classical restricted three-body problem with constant 
masses Markeev [32], Szebehely [33].

6.2 System of differential equations of motion of 
bodies 2P and 3P in barycentric coordinate system

To study the problem under consideration, 
instead of the system (45)-(47), we can study the 
following system of equations 

2
2 1 2 2 2 2 213

2

.reac
rr fm A r B r F
r

ν= − + + +




  

  (51)

3

*
3 23 2 23 2 32reacrr grad U A r B r F= + + +



  

 
 (52)

1
23 23 2

1 1 1

32 3 1 2
3

2 , 4 ,

1 1 ,reac reac reac reac

A BA B A

F F F F
m m

ν
ν ν ν

= − = − +

 = − + 



   

(53)

7. Results and Discussion

In the present paper, we formulate a new 
celestial-mechanical problem when condition (1) –
(8) are satisfied. Differential equations of the 
formulated problem in absolute, relative and 
barycentric coordinate systems are obtained for the 
first time. The equations of motion in the relative 
coordinate system are convenient for studying the 
considered problem in the case of an inner restricted 
problem. The equations of motion in the barycentric 
coordinate system can be effectively used in the study 
of the outer restricted problem of the considered 
problem.
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