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Inverse problem for determining the coefficient  
in the heat conduction equation

Abstract. This paper considers the inverse problem of determining the thermal conductivity coefficient in 
the heat equation. The objective of this study is to determine the unknown coefficient based on measured 
boundary temperature data over time. The governing equation is a parabolic partial differential equation that 
describes the heat transfer process, with the unknown thermal conductivity playing a decisive role in the 
solution. The inverse problem is formulated as an optimization problem, in which the discrepancy between 
the simulated temperature distribution and the experimental data is minimized. Numerical modeling 
methods were used to solve the problem, including the tridiagonal matrix algorithm (Thomas algorithm) 
for discretizing the heat equation. The optimization process was performed using gradient methods, where 
the adjoint problem was used to efficiently calculate the gradient of the objective function with respect to 
the thermal conductivity coefficient. The results demonstrated acceptable accuracy in reconstructing the 
coefficient. Different parameters for the reduction factor in the gradient method were also considered. These 
findings are important for applications in fields such as materials science, geophysics, and engineering, 
where accurate estimation of thermal properties is essential.
Key words: inverse problem, heat transfer, adjoint problem, thermal conductivity coefficient, numerical 
modeling.
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equation

Abstract. This paper considers the inverse problem of determining the thermal conductivity coefficient in the heat 
equation. The objective of this study is to determine the unknown coefficient based on measured boundary temperature 
data over time. The governing equation is a parabolic partial differential equation that describes the heat transfer process, 
with the unknown thermal conductivity playing a decisive role in the solution. The inverse problem is formulated as an 
optimization problem, in which the discrepancy between the simulated temperature distribution and the experimental data 
is minimized. Numerical modeling methods were used to solve the problem, including the tridiagonal matrix algorithm 
(Thomas algorithm) for discretizing the heat equation. The optimization process was performed using gradient methods, 
where the adjoint problem was used to efficiently calculate the gradient of the objective function with respect to the 
thermal conductivity coefficient. The results demonstrated acceptable accuracy in reconstructing the coefficient. Different 
parameters for the reduction factor in the gradient method were also considered. These findings are important for 
applications in fields such as materials science, geophysics, and engineering, where accurate estimation of thermal 
properties is essential.
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1. Introduction

The accurate determination of thermal 
properties, particularly the thermal conductivity 
coefficient, is important in various scientific and 
engineering fields, such as materials science, 
geophysics, and energy systems engineering. 
Thermal conductivity is a critical parameter that 
characterizes the ability of a material to conduct 
heat and is crucial for designing efficient thermal 
management systems, improving material 
performance, and understanding heat transfer 
mechanisms in different environments [1].
Consequently, accurate estimation of thermal 
conductivity is fundamental to achieving optimal 
performance in applications ranging from 
industrial processes to environmental modeling. 

The heat conduction equation, a parabolic 
partial differential equation (PDE), governs the 
distribution of temperature in a given domain 
over time. This equation has been extensively 
studied and applied in scenarios involving heat 

transfer, such as in solids and fluids. Thermal 
conductivity is one of the most decisive factors 
influencing heat transfer behavior. However, in 
many practical situations, the thermal 
conductivity coefficient is not readily available, 
either because it is difficult to measure directly 
or because the material properties change over 
time or space. In such cases, it becomes 
necessary to solve an inverse problem to identify 
the unknown coefficient based on observed 
temperature data [2].

Inverse problems are inherently more 
challenging than direct problems. In a direct 
problem, the governing equations and material 
parameters are known. In contrast, in an inverse 
problem, some information – such as material 
properties like the thermal conductivity 
coefficient or boundary conditions – is missing, 
and the goal is to deduce this missing 
information based on measurements of the 
system's response, such as boundary or internal 
temperatures [3] – [8].
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In this study, the inverse problem of 
determining the thermal conductivity coefficient 
in the heat equation using boundary temperature 
measurements over time was addressed. In 
particular, spruce was considered as the main 
material. Synthetic values at 𝑘𝑘𝑘𝑘 =
0.65 [𝑊𝑊𝑊𝑊 𝑚𝑚𝑚𝑚−1 𝐶𝐶𝐶𝐶−1] (thermal conductivity 
coefficient of spruce) were used as experimental 
measurements. The primary focus is on 
developing a robust numerical approach to 
efficiently and accurately estimate the unknown 
coefficient. Specifically, the inverse problem is 
formulated to minimize the discrepancy between 
the simulated temperature distribution and the 
experimental measurements. This approach 
enables iterative adjustment of the unknown 
coefficient to best match the observed data, thus 
yielding an estimate of the thermal conductivity
[9].

The tridiagonal matrix algorithm (Thomas 
algorithm) was employed for the discretization 
of the heat equation. The gradient of the 
objective function with respect to the thermal 
conductivity coefficient was computed using the 
adjoint problem, significantly enhancing 
computational efficiency [10].

Additionally, the influence of descent 
parameters within the gradient optimization 
method was explored, focusing on the accuracy 
and convergence speed of the solution. This step 
is crucial to ensuring that the optimization 
process remains stable and that the reconstructed 
coefficient is as accurate as possible. Numerical 
experiments were conducted to assess the 
performance of the proposed method, and the 
results demonstrated acceptable accuracy in 
reconstructing the thermal conductivity 
coefficient. 

The findings of this study have significant 
implications for practical applications where 
precise thermal property estimation is required. 
Future work may explore extending this method 
to more complex scenarios, such as 
multidimensional heat conduction problems, and 
incorporating advanced regularization 
techniques to enhance robustness against 
measurement errors. 

All calculations were performed using 
Jupyter Lab and implemented in Python using 
the NumPy and Matplotlib libraries for efficient 
numerical analysis and data visualization.

2. Mathematical models and methods

The temperature distribution in spatial 
domain and its variation over time are described 
by a second-order partial differential equation.

𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

= 𝑘𝑘𝑘𝑘 𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇(𝑥𝑥𝑥𝑥,𝑡𝑡𝑡𝑡)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

, 0 < 𝑥𝑥𝑥𝑥 < 𝐿𝐿𝐿𝐿, 0 < 𝑡𝑡𝑡𝑡 < 𝑇𝑇𝑇𝑇 (1)

Here 𝑇𝑇𝑇𝑇(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) is the temperature distribution 
depending on the coordinate 𝑥𝑥𝑥𝑥 and time 𝑡𝑡𝑡𝑡.
Neumann conditions are set at the lateral 
boundaries of the region:

𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
�
𝑥𝑥𝑥𝑥=0

= 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
�
𝑥𝑥𝑥𝑥=𝐿𝐿𝐿𝐿

= 0 (2)

Initial condition:

𝑇𝑇𝑇𝑇|𝑡𝑡𝑡𝑡=0 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥), where 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 6 ∙ sin �𝜋𝜋𝜋𝜋𝑥𝑥𝑥𝑥
𝐿𝐿𝐿𝐿
� (3)

The thermal conductivity coefficient 𝑘𝑘𝑘𝑘 is 
unknown and must be determined by solving the 
inverse problem. 

Further, all problems are solved in discrete 
form. To achieve this, the interval (0, 𝐿𝐿𝐿𝐿) is 
divided into 𝑁𝑁𝑁𝑁 equal parts with a step size of 
∆𝑥𝑥𝑥𝑥 = 𝐿𝐿𝐿𝐿

𝑁𝑁𝑁𝑁
, and the interval (0, 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥) is divided into 

𝑚𝑚𝑚𝑚 equal parts with a step size of ∆𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

. As a 
result, a grid domain is formed with a mesh 𝜔𝜔𝜔𝜔 =
��𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗�, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖∆𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗∆𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 = 0, … ,𝑁𝑁𝑁𝑁, 𝑗𝑗𝑗𝑗 =
0, … ,𝑚𝑚𝑚𝑚�. At the node �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗�, the exact values of 
the functions 𝑇𝑇𝑇𝑇�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗� are located.

The problem is approached iteratively. 
Initially, the 𝑛𝑛𝑛𝑛-th approximation 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) is 
specified. The next approximation 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛 + 1) for 
the subsequent iteration is obtained by 
minimizing the functional:

𝐼𝐼𝐼𝐼 = �  
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

 �𝑇𝑇𝑇𝑇N
𝑗𝑗𝑗𝑗+1 − 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

𝑗𝑗𝑗𝑗+1�
2
Δ𝑡𝑡𝑡𝑡 → 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛, 
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 𝑗𝑗𝑗𝑗 = 0, … ,𝑚𝑚𝑚𝑚− 1                       (4)

Where 𝑇𝑇𝑇𝑇N
𝑗𝑗𝑗𝑗+1 is the temperature at the right 

boundary obtained by the numerical solution,
and 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

𝑗𝑗𝑗𝑗+1 is the experimentally measured value
on the surface of the spruce.

All calculations are performed in the domain 
𝜔𝜔𝜔𝜔 = (0, 𝐿𝐿𝐿𝐿) × (0,𝑇𝑇𝑇𝑇), where 𝐿𝐿𝐿𝐿 = 1, 𝑇𝑇𝑇𝑇 = 1. When 
the exact value of 𝑘𝑘𝑘𝑘 is found, the numerical solu-
tion yields accurate results, and the value of the 
functional tends to zero. To minimize 𝐼𝐼𝐼𝐼, sensi-
tivity and adjoint problems are formulated [11].

3. Derivation of the sensitivity and 
adjoint problems

The discrete form of equation (1) is 
considered as follows:

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1 = 𝑘𝑘𝑘𝑘 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥�̅�𝑥𝑥𝑥

𝑗𝑗𝑗𝑗+1 (5)

Where

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1 = 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1−𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗

∆𝑡𝑡𝑡𝑡
,

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1 =

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 − 2𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 + 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1

(∆𝑥𝑥𝑥𝑥)2

�̅�𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡̅ mean the backward difference 
approximation, and 𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 denotes the forward 
difference approximation, respectively.

The delta operator ∆ is introduced to 
represent the difference between two 
consecutive steps 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 + 1 :

∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 = 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛 + 1) − 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛)

where 𝑛𝑛𝑛𝑛 − iteration number. Applying the delta 
operator to system (1)–(4) yields:

∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1 = ∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥�̅�𝑥𝑥𝑥

𝑗𝑗𝑗𝑗+1� (6)

∆𝑇𝑇𝑇𝑇1,�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1 = 0, ∆𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁,�̅�𝑥𝑥𝑥

𝑗𝑗𝑗𝑗+1 = 0 (7)

∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖0 = 0 (8)

Subsequently, the adjoint problem is derived 
from the sensitivity problem (6)–(8).

Equation (6) is multiplied by an arbitrary grid 
function 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡 and summed over all grid 
points.

𝜔𝜔𝜔𝜔 =  ��𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗�, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖∆𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗∆𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 =
= 1, … ,𝑁𝑁𝑁𝑁 − 1, 𝑗𝑗𝑗𝑗 = 0, … ,𝑚𝑚𝑚𝑚�

Then

� � ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥 =

= ∑ ∑ ∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1�𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1
𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡 (9)

The formula for summation by parts is 
derived by considering the following expression:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖−1 = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥

The final equality is summed over 𝑖𝑖𝑖𝑖 from 𝑘𝑘𝑘𝑘
to 𝑛𝑛𝑛𝑛:

𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘−1𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1 =

= �𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥 
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=𝑘𝑘𝑘𝑘

+ �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥 
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=𝑘𝑘𝑘𝑘

This resulting equality can be rewritten in the 
following form:

�𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥 
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=𝑘𝑘𝑘𝑘

=

= 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘−1𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1 − ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥 𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=𝑘𝑘𝑘𝑘 (10)

or in this form:

∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥 = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘−1𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1 −𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=𝑘𝑘𝑘𝑘 ∑ 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,�̅�𝑥𝑥𝑥∆𝑥𝑥𝑥𝑥 𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=𝑘𝑘𝑘𝑘 (11)
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The summation by parts formula (10) is applied to the left-hand side of equation (9) with respect 
to the variable 𝑗𝑗𝑗𝑗:

� � ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥 = �(∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖0𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖0)∆𝑥𝑥𝑥𝑥 − � � ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

Taking into account the initial conditions (8) and assuming that

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 0, 𝑖𝑖𝑖𝑖 = 1, 2, … ,𝑁𝑁𝑁𝑁

the following equation is obtained:

∑ ∑ ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥 = −∑ ∑ ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0
𝑁𝑁𝑁𝑁−1
𝑖𝑖𝑖𝑖=1

𝑁𝑁𝑁𝑁−1
𝑖𝑖𝑖𝑖=1 (12)

Applying the summation by parts formula (11), the right-hand side of equation (9) is transformed 
as follows:

� �∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1�

�̅�𝑥𝑥𝑥

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

=

= ��∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁,�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1�𝜓𝜓𝜓𝜓𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗 − ∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇1,�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1�𝜓𝜓𝜓𝜓0

𝑗𝑗𝑗𝑗�∆𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

− � �∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1�

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 ∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

Using the boundary conditions (7):

∑ ∑ ∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1�

�̅�𝑥𝑥𝑥
𝑁𝑁𝑁𝑁−1
𝑖𝑖𝑖𝑖=1 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0 = −∑ ∑ ∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗+1�𝑁𝑁𝑁𝑁−1
𝑖𝑖𝑖𝑖=1 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 ∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0 (13)

Based on (10) and (11), the relation (9) is expressed as:

−∑ ∑ ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0
𝑁𝑁𝑁𝑁−1
𝑖𝑖𝑖𝑖=1 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡

𝑗𝑗𝑗𝑗+1∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥 = −∑ ∑ ∆�𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1�𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1
𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 ∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡 (14)

Using the obvious equality:

∆(𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔) = ∆𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔(𝑛𝑛𝑛𝑛 + 1) + 𝑓𝑓𝑓𝑓(𝑛𝑛𝑛𝑛)∆𝑔𝑔𝑔𝑔

The equation (14) can be rewritten as follows:
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−� � ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥 =

= −∑ ∑ ∆𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛 + 1)𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1
𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 ∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡 − ∑ ∑ 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1
𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 ∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡 = −𝐴𝐴𝐴𝐴1 − 𝐴𝐴𝐴𝐴2 (15)

Using the summation by parts formula to the 𝐴𝐴𝐴𝐴2, the following expression is obtained:

𝐴𝐴𝐴𝐴2 = � �∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 ∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡 =

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

 

= ��∆𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗+1𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑁𝑁𝑁𝑁,�̅�𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 − ∆𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓1,�̅�𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 �∆𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

− � �∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 �
�̅�𝑥𝑥𝑥

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

Assume that homogeneous boundary conditions are applied on the left boundary of the domain.

𝜓𝜓𝜓𝜓1,�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 = 0, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚 − 1,𝑚𝑚𝑚𝑚 − 2, … , 0.

From equation (13), the following formula is obtained:

−� � ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥 = � �∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

�𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 �

�̅�𝑥𝑥𝑥
∆𝑥𝑥𝑥𝑥∆𝑡𝑡𝑡𝑡 − � ∆𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗+1𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑁𝑁𝑁𝑁,�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 ∆𝑡𝑡𝑡𝑡 − 𝐴𝐴𝐴𝐴1

After collecting similar terms, the following expression is derived:

−∑ ∑ ∆𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡

𝑗𝑗𝑗𝑗+1 + 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 �𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0
𝑁𝑁𝑁𝑁−1
𝑖𝑖𝑖𝑖=1 ∆𝑡𝑡𝑡𝑡∆𝑥𝑥𝑥𝑥=−∑ ∆𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑁𝑁𝑁𝑁,�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 �∆𝑡𝑡𝑡𝑡 −𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0 𝐴𝐴𝐴𝐴1 (16)

For iterations 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 + 1, the following 
functionals are obtained:

𝐼𝐼𝐼𝐼[𝑛𝑛𝑛𝑛] = ∑  𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0 �𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁

j+1(𝑛𝑛𝑛𝑛) − 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒
j+1�

2
Δ𝑡𝑡𝑡𝑡 ≡ 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛

𝐼𝐼𝐼𝐼[𝑛𝑛𝑛𝑛 + 1] =

= �  
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

�𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
j+1(𝑛𝑛𝑛𝑛 + 1) − 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

j+1�
2
Δ𝑡𝑡𝑡𝑡 ≡ 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛+1

Using the obvious formula:

𝑎𝑎𝑎𝑎2 − 𝑏𝑏𝑏𝑏2 = 2(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)𝑏𝑏𝑏𝑏 + (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)2

the following expression is obtained

𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛+1 − 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 = 2 �  
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗+1�𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛) − 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒
𝑗𝑗𝑗𝑗+1�𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡

+∑  𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0  �𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗+1�
2
𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡 (17)

Based on equations (14) and (15), the adjoint 
problem is formulated:

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,�̅�𝑡𝑡𝑡
𝑗𝑗𝑗𝑗+1 + 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥�̅�𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 = 0 (18)
𝑖𝑖𝑖𝑖 = 1, 2, … ,𝑁𝑁𝑁𝑁 − 1

𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚− 1,𝑚𝑚𝑚𝑚 − 2, … ,0
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At the final time 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇, the 
following condition is imposed:

𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 0, 𝑖𝑖𝑖𝑖 = 0, 1, … ,𝑁𝑁𝑁𝑁 (19)

At the boundary 𝑥𝑥𝑥𝑥 = 0, Neumann conditions 
is imposed:

𝜓𝜓𝜓𝜓1,�̅�𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 = 0, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚− 1,𝑚𝑚𝑚𝑚 − 2, … ,0 (20)

At the right boundary, i.e., at 𝑥𝑥𝑥𝑥 = 𝐿𝐿𝐿𝐿, the 
following condition is imposed:

𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑁𝑁𝑁𝑁,�̅�𝑥𝑥𝑥 = 2�𝑇𝑇𝑇𝑇N
𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛) − 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

𝑗𝑗𝑗𝑗+1� (21)

The systems (1)–(3) and (18)–(20) are 
numerically implemented using the Thomas 
algorithm.

After deriving the adjoint problem from 
equations (16) and (17), the following formula 
remains:

𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛+1 − 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 = −𝐴𝐴𝐴𝐴1 + ∑  𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0  �Δ𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗+1�
2
Δ𝑡𝑡𝑡𝑡 (22)

Here

𝐴𝐴𝐴𝐴1 = ∑  𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0  ∑  𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1  𝛥𝛥𝛥𝛥𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛 + 1)𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 𝛥𝛥𝛥𝛥𝑥𝑥𝑥𝑥𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡

However

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛 + 1) = 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1

Thus equation (20) is written as follows:

𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛+1 − 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 =
= −∑  𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0 ∑ Δ 𝑘𝑘𝑘𝑘𝑁𝑁𝑁𝑁−1
𝑖𝑖𝑖𝑖=1 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗 Δ𝑥𝑥𝑥𝑥𝛥𝛥𝛥𝛥𝑡𝑡𝑡𝑡 + 𝑅𝑅𝑅𝑅 (23)

Where 𝑅𝑅𝑅𝑅 − small second-order term which is 
determined by the following formula:

The value of Δ 𝑘𝑘𝑘𝑘 is selected such that the 
following inequality holds:

𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛+1 − 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 < 0

Then

∆𝑘𝑘𝑘𝑘 = �  
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

 �  
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1(𝑛𝑛𝑛𝑛)𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 Δ𝑥𝑥𝑥𝑥Δ𝑡𝑡𝑡𝑡

Subsequently, at each iteration, the value of 
the thermal conductivity coefficient is updated 
by minimizing the functional using the gradient 
descent method, as follows [12]:

𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛 + 1) = 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) + 𝛼𝛼𝛼𝛼(𝑛𝑛𝑛𝑛)𝛥𝛥𝛥𝛥𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)

where 𝛥𝛥𝛥𝛥𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) represents the gradient of the 
functional with respect to 𝑘𝑘𝑘𝑘 at iteration 𝑛𝑛𝑛𝑛, and 
𝛼𝛼𝛼𝛼(𝑛𝑛𝑛𝑛) is the step size that controls the magnitude 
of the update. 

Here

𝛼𝛼𝛼𝛼(𝑛𝑛𝑛𝑛) = 𝛼𝛼𝛼𝛼0
(1+𝑛𝑛𝑛𝑛)𝛽𝛽𝛽𝛽

(24)

𝛼𝛼𝛼𝛼0, 𝛽𝛽𝛽𝛽 – gradient descent parameters, 𝑛𝑛𝑛𝑛 −
iteration number. 0 < 𝛼𝛼𝛼𝛼0,𝛽𝛽𝛽𝛽 < 1

This iterative approach adjusts 𝑘𝑘𝑘𝑘 in the 
direction of the steepest descent, ensuring 
convergence toward the optimal value.

Algorithm for solving the inverse problem
Step 1. Initial approximations 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛),𝛼𝛼𝛼𝛼0,𝛽𝛽𝛽𝛽 are 

specified [13].
Step 2. The direct finite-difference problem 

(1) – (3) is solved in the domain 𝜔𝜔𝜔𝜔.
Step 3. The adjoint finite-difference problem 

(18) – (21) is solved in the domain 𝜔𝜔𝜔𝜔.
Step 4. The value of the functional is 

computed. 

𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛+1 = �  
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

 �𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗+1 − 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

𝑗𝑗𝑗𝑗+1�
2
Δ𝑡𝑡𝑡𝑡

Step 5. The value of ∆𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) is computed as:

∆𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) = �  
𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

 �  
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥
𝑗𝑗𝑗𝑗+1𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥

𝑗𝑗𝑗𝑗 Δ𝑥𝑥𝑥𝑥Δ𝑡𝑡𝑡𝑡
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Step 6. The parameter 𝛼𝛼𝛼𝛼(𝑛𝑛𝑛𝑛) is updated as 
𝛼𝛼𝛼𝛼(𝑛𝑛𝑛𝑛) = 𝛼𝛼𝛼𝛼0

(1+𝑛𝑛𝑛𝑛)𝛽𝛽𝛽𝛽
, and the next approximation of 

the coefficient 𝑘𝑘𝑘𝑘 is computed as:

𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛 + 1) = 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) + 𝛼𝛼𝛼𝛼(𝑛𝑛𝑛𝑛)∆𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)

Step 7. It is checked whether one of the 
following inequalities is satisfied: 

|𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛 + 1) − 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)| < 𝜀𝜀𝜀𝜀1 or 𝐼𝐼𝐼𝐼 < 𝜀𝜀𝜀𝜀2,

where 𝜀𝜀𝜀𝜀1 = 10−5, 𝜀𝜀𝜀𝜀2 = 10−6.
The first condition ensures that the problem 

has stabilized, and the change in the parameter 𝑘𝑘𝑘𝑘
between iterations is negligible. The second 
condition ensures that the difference between the 
experimental and numerical values has become 
insignificant, confirming that the exact 
parameter 𝑘𝑘𝑘𝑘 has been found. Small values of 𝜀𝜀𝜀𝜀
ensure the accuracy of the solution.

Step 8. If one of the inequalities is satisfied, 
the true value of 𝑘𝑘𝑘𝑘 is found. If neither inequality 
is satisfied, set 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛 + 1 and return to Step 2.

4. Results and Discussion

The Figure 1 presents the results of solving 
the inverse problem using the Thomas algorithm. 
Six cases were considered, where the initial 
estimate of the thermal conductivity coefficient 
𝑘𝑘𝑘𝑘 deviated by ±10%, ±25%, and ±50% from its
exact value. Additionally, the influence of the 
descent parameter 𝛽𝛽𝛽𝛽 in the formula (24) was 
investigated. Three different values of the 
parameter 𝛽𝛽𝛽𝛽 were tested: 0.1, 0.25, 0.5.

In all the graphs, it can be observed that the 
convergence of all solutions gradually 
approaches the exact value 𝑘𝑘𝑘𝑘 = 0.65, regardless 
of the initial deviation.

It was observed, that the speed of the solution 
depends on the initial deviation: for negative 
deviations from the exact values of 𝑘𝑘𝑘𝑘, the 
convergence rate is practically independent of 
the deviation value, requiring about 160 – 210
iterations. However, for positive deviations, the 

convergence time increases proportionally to the 
deviation value, varying from 187 to 510 
iterations. 

Analysis of various descent parameters 𝛽𝛽𝛽𝛽
showed that the fastest convergence is achieved 
at 𝛽𝛽𝛽𝛽 = 0.25. Remarkably, even with significant 
initial deviations, such as +50% and –50%, the 
algorithm remains stable and returns the correct 
value of 𝑘𝑘𝑘𝑘. This emphasizes the robustness of the 
method under various initial assumptions.

5. Conclusion

In this paper, the inverse problem for 
determining the thermal conductivity coefficient 
𝑘𝑘𝑘𝑘 was solved using an iterative approach that 
included the following three main steps: a 
forward problem, an adjoint problem, and a 
gradient-based update scheme. The forward and 
adjoint problems were discretized using the 
finite difference method and solved by the 
Thomas algorithm. At each iteration, the 
discrepancy between the numerical solution and 
the temperature measurements was minimized to 
find 𝑘𝑘𝑘𝑘.

According to the obtained results, the 
proposed method effectively finds the thermal 
conductivity coefficient close to the exact value 
(𝑘𝑘𝑘𝑘 = 0.65) regardless of the initial deviation. At 
the same time, when setting negative initial 
deviations from the true value, equal to -10%, -
25% and -50%, the convergence rate practically 
did not change and remained relatively constant. 
When setting positive initial deviations equal to 
+10%, +25% and +50%, with an increase in the 
initial deviations, the number of iterations 
increased. 

The results showed that the convergence rate 
is sensitive to the descent parameter 𝛽𝛽𝛽𝛽, where at 
𝛽𝛽𝛽𝛽 = 0.25, the optimal convergence rate was 
obtained. One of the key numerical results 
obtained by the proposed model is that the 
algorithm demonstrated reliability and stability 
even in cases with large initial deviations 
(±50%), returning the exact values of 𝑘𝑘𝑘𝑘.
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Figure 1 – Dependence of the rate of convergence of the thermal conductivity coefficient
for different initial deviations from the exact value and descent parameters 𝛽𝛽𝛽𝛽
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The results show that the iterative approach 
(using the direct problem, adjoint problem, and 
gradient descent) reliably converges to an exact 
estimate of 𝑘𝑘𝑘𝑘, even with varying initial guesses. 
This suggests that, under the tested scenarios and 
assumptions, 𝑘𝑘𝑘𝑘 can be uniquely identified in 
practice. Additionally, exploring the sensitivity 
of 𝑘𝑘𝑘𝑘 to noise in the data and improving the 
accuracy of model assumptions are promising 
directions for future research. These methods 
would further aid in studying the uniqueness of 
𝑘𝑘𝑘𝑘 and will be investigated in subsequent work.

The proposed method has proven to be 
effective for solving inverse problems of finding 
thermal conductivity coefficients. Due to its 

iterative approach, combined with the stability of 
the Thomas algorithm, makes it a valuable tool 
for practical applications in engineering and 
materials science, where precise determination 
of thermal properties is critical. Future work 
could explore its application to more complex 
multi-dimensional problems, further establishing 
its versatility and utility.
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