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Abstract. This paper studies the boundary control problem for a one-dimensional heat transfer equation 
under periodic boundary conditions, which arise in practical scenarios such as the thermal regulation of cy-
lindrical rods or ring-shaped domains. The main objective is to determine the optimal control function, pre-
scribed at the boundary, that ensures the rod reaches a specified average temperature over time. By applying 
the method of separation of variables, the control problem is reduced to a Volterra integral equation of the 
first kind. As is well known, such equations are classically ill-posed and notoriously difficult to analyze. 
To address this, we derive the necessary estimates for the kernel of the integral equation and employ the 
Laplace transform method to establish the existence and admissibility of the control function within appro-
priate Sobolev spaces. Furthermore, we demonstrate the regularity properties of the solution. In addition, a 
concrete example is provided to illustrate how the control function can be explicitly constructed for specific 
parameter values. This result contributes to the broader understanding of boundary control in parabolic 
partial differential equations and offers potential applications in the optimal control of thermal processes.
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The control problem associated with heating process of a rod

Abstract. This paper studies the boundary control problem for a one-dimensional heat transfer equation
under periodic boundary conditions, which arise in practical scenarios such as the thermal regulation of
cylindrical rods or ring-shaped domains. The main objective is to determine the optimal control function, 
prescribed at the boundary, that ensures the rod reaches a specified average temperature over time. By
applying the method of separation of variables, the control problem is reduced to a Volterra integral equation 
of the first kind. As is well known, such equations are classically ill-posed and notoriously difficult to
analyze. To address this, we derive the necessary estimates for the kernel of the integral equation and employ
the Laplace transform method to establish the existence and admissibility of the control function within 
appropriate Sobolev spaces. Furthermore, we demonstrate the regularity properties of the solution. In
addition, a concrete example is provided to illustrate how the control function can be explicitly constructed 
for specific parameter values. This result contributes to the broader understanding of boundary control in 
parabolic partial differential equations and offers potential applications in the optimal control of thermal
processes.

Keywords: heat conduction equation, average temperature, periodic boundary condition, control
problem, Volterra integral equation, Laplace transform.

1. Introduction

It is known that due to the widespread use of 
partial differential equations in physics and 
engineering, there is always a great interest in the 
study of boundary control problems. Therefore, in 
recent years, the control issues for heat transfer 
equations have been widely studied by many 
researchers. 

It is well known that publications [1, 2] have 
examined preliminary findings on optimal time 
control problems for parabolic type PDEs. The 
control problem for a linear parabolic type equation 
in a one-dimensional domain with Robin boundary 
condition was studied in [3]. The control problem of 
parabolic type PDE equations in an infinite 
dimensional domain was first examined in [4]. 

 The time-varying bang-bang property of time 
optimal controls for heat equation and its 
applications is studied in [5]. 

Early work on the control problem considered in 
our work is studied in detail in [6]. In [7], the 
boundary control problem for the heat equation with 
the Robin boundary condition is studied and 

developed a mathematical model of the heating 
process of a cylindrical domain. Important work in 
this field can be seen in articles [8, 9]. These works 
addressed control problems in one, two, and three 
dimensions. They also demonstrated the 
admissibility of the control by demonstrating the 
existence of an integral equation solution by the 
application of the Laplace transform method. Many 
optimal control problems for parabolic equations 
can be seen in [10-13]. 

In [14], Guo and Littman considered the null-
boundary control problem for a semilinear heat 
equation with Dirichlet boundary condition in a one-
dimensional bounded domain.  

In [15], a mathematical model of thermocontrol 
processes was studied. The optimal time problem in 
boundary control of the heat conduction equation 
and its relationship to the "bang-bang" principle 
were examined in [16]. It was proved that the 
optimal time control with respect to arbitrary target 
temperature distribution in boundary control is 
“Bang-Bang”. In [17], the minimal time control 
problem for a linear heat equation with memory was 
considered. The purpose of such a problem is to find 
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a control, which steers the solution of the heat 
equation with memory from a given initial state to a 
given target as soon as possible. 

Many details regarding optimal control 
problems can be found in the monographs [18, 19]. 
In [20], a specific time optimum control problem 
with a closed ball centered at zero as the target was 
studied. The problem was governed by the internal 
controlled heat equation. Some practical problems 
of the control problem with different boundary 
conditions for the linear heat transfer equation were 
studied in [21]. 

We can see that the control problems for the 
heat equation in our work come down to solving the 
Volterra integral equation of the first kind. As a 
result of the research, it was found that when such a 
control problem is considered in pseudo-parabolic 
equations, the problem of finding control comes to 
Volterra integral equation of the second kind. We 
can see the control problems for the pseudo-
parabolic equation in works [22, 23].  

The current work examines the heat transfer 
equation's control problem with a periodic boundary 
condition. In the past, control problems using heat 
equations' Dirichlet, Neumann, and Robin boundary 
conditions were examined. The primary objective of 
this work is to determine the control function that is 
required to heat the rod to a specified average 
temperature. By applying the separation of variables 
method, we are able to solve the heat equation's 
initial boundary value problem. This reduces the 
control problem to the Volterra integral equation of 
the first kind. It is well known that the Volterra 
integral equation of the first kind is typically ill-
posed and that it is not always simple to solve. For 
this, the required estimates for the integral 
equation's kernel were found, and the Laplace 
transform method was used to demonstrate the 
existence of the equation's solution. In the final part, 
a sample of finding a control function at a given 
parameter value is provided. 

 
2. Statement of problem  
 
In the present article, we consider the heat 

conduction equation  
 

2
2

2

( , ) ( , )= ,

( , ) := ( , ) (0, ),

u x t u x ta
t x

x t L L

∂ ∂
∂ ∂
∈Ω − × ∞

           (1) 

 

with boundary value conditions  
 

( , ) ( , ) = ( ), 0,u L t u L t t tν− − ≥           (2) 
 and  

( , ) ( , ) = 0,x xu L t u L t− −                  (3) 
 

 and initial condition  
 

( ,0) = 0, ,u x L x L− ≤ ≤                (4) 
 
where 0L >  denotes the length of the interval, 

0a >  is the thermal conductivity coefficient, and 
( )tν  is the control function, which gives the flow 

amplitude. 
In the next steps, we assume that the constant 

representing the coefficient of conductivity is = 1a . 
Definition 2.1. A control function 

:[0, )ν ∞ →  is called an admissible if it belongs 
to the Sobolev space 1

2 ( )W + , and satisfies the 
conditions (0) = 0ν , | ( ) | 1tν ≤  for all 0t ≥ . 

 According to the properties of Sobolev spaces, 
such a function is continuous on the half-line 0.t ≥  

We now consider the following control problem. 
Control Problem. Assume that the function 

( )tφ  is given. Then, find the control function ( )tν  
from the following equation:  

 
0

( , , ( )) = ( ), 0,
L

u x t t dx t tν φ
−

≥∫           (5) 

 
where ( , , ( ))u x t tν  is the solution of the mixed 
problem (1)-(4) and it depends on the control 
function ( )tν . 

In the above control problem, the physical 
meaning of equation (5) refers to the average 
temperature in the [ , 0]L−  section of the 2L  long 
thin rod. Our main goal in this work is to show how 
the control function should be so that the average 
temperature in the rod is equal to ( )tφ . 

For any > 0M , we denote by ( )W M  the set 
of functions 2

2 ( , )Wφ ∈ −∞ +∞ , which satisfy the 
following conditions:  

 
2 ( )2

, ( ) = 0 0.
W

M t for tφ φ
+
≤ ≤ 


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We now offer the primary theorem for 
demonstrating admissible control’s existence. 

 
Theorem 2.1. There is a > 0M  such that, for 

any function ( )W Mφ ∈ , the solution ( )tν  to 
equation (5) exists and satisfies the condition 
| ( ) | 1tν ≤ .  

 
We will consider the proof of Theorem 2.1 step 

by step in the next sections. 
 
3. Integral equation for control function 
 
This section contains the solutions to the initial 

boundary value problem and the spectral problem. 
Consequently, we possess the primary integral 
equation for determining the control function. 

 We now consider the spectral problem  
 

( ) ( ) = 0, ( , ),X x X x x L Lλ′′ + ∈ −  
 
with periodic boundary conditions 
 

( ) = ( ),X L X L−  
and 

( ) = ( ), [ , ].X L X L x L L′ ′− ∈ −  
 
Then we have the following eigenvalues:  
 

2 2

02= , = {0},k
k k

L
πλ ∈ ∪   

 
and the eigenfunctions  
 

1

2 0

= sin , ,

= cos , .

k

k

kX k
L
kX k
L

π

π

∈

∈




 

 
For an arbitrary Banch space B and for 0T >  

by the symbol ( )[0, ]С T B→  we denote the 
Banach space of all continuous maps :[0, ]u T B→  
with the norm 

0
max ( ) .

t T
u u t

≤ ≤
=  

 
By symbol 1

2 ( )W Ω  we denote the subspace of 

the Sobolev space 1
2 ( )W Ω  formed by functions, 

whose trace on ∂Ω  is equal to zero. Note that due 
to the closure 1

2 ( )W Ω  the sum of series of functions 

from 1
2 ( )W Ω , converging in metric 1

2 ( )W Ω  also 

belongs to 1
2 ( )W Ω , where : { : }.x L x LΩ = − < <  

Definition 3.1. By the solution of the initial 
boundary value problems (1)–(4) we mean a 
function ( , )u x t , represented in the form 

 

( , ) = ( ) ( , ),
2

L xu x t t w x t
L

ν −
−

               
(6) 

 
where the function ( , )w x t  is a generalized solution 

from the class ( )1
2[0, ] ( )C T W→ Ω  of the following 

problem: 

( , ) ( , ) = ( ),
2t xx

L xw x t w x t t
L
ν− ′−  

 
with periodic boundary conditions  
 

( , ) = ( , ), ( , ) = ( , ),x xw L t w L t w L t w L t− −  
 
and initial condition  
 

( ,0) = 0.w x  
 
We solve the solution of the above mixed 

problem by the Fourier method. 
Thus, we obtain (see [24])  
 

1( , ) = ( )
2

w x t tν +
 

( )

=1 0

( 1) ( ) sin .
tk

t sk

k

ke s ds x
k L

λ πν
π

∞
− − − ′ 

 
∑ ∫        (7) 

 
Note that the class ( )1

2[0, ] ( )C T W→ Ω  is a 

subset of the class 1,0
2 ( )W Ω , which was considered 

in monograph [25] for defining a solution to the 
problem homogeneous boundary conditions (see the 
corresponding uniqueness theorem in Ch. III, 
Theorem 3.2, pp 173-176). Therefore, the above 
introduced generalized solution is also a generalized 
solution in the sense of [25]. However, unlike a 
solution from the class 1,0

2 ( )W Ω , which is 
guaranteed to have a trace for almost everywhere 
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[0, ]t T∈ , a solution from a class 

( )1
2[0, ] ( )C T W→ Ω  continuously depends on 

[0, ]t T∈  in the metric 2 ( )L Ω . 

Lemma 3.1. Let 1
2 ( )Wν +∈   and (0) 0ν = . 

Then the function  
 

( , , ( ))u x t tν =

( )
2

=1 0

( 1) ( ) sin ,
t

t sk k

k

kk e s ds x
L L

λπ πν
∞

− − 
−  

 
∑ ∫  (8) 

 
is the solution of the initial-boundary problem (1)-
(4). 

 Proof. Using (6) and (7), we rewrite the 
solution of problem (1)-(4) in the form  

 
1( , , ( )) = ( ) ( )

2 2
L xu x t t t t

L
ν ν ν−

− −  

( )

=1 0

( 1) ( ) sin .
tk

t sk

k

ke s ds x
k L

λ πν
π

∞
− − − ′−  

 
∑ ∫  

 
We will prove that function ( , )w x t  represented 

by the indicated Fourier series, belongs to the class 
( )1

2[0, ] ( )C T W→ Ω . It suffices to prove that 

gradient of this function, taken with respect to 
x∈Ω , continuously depends on [0, ]t T∈  on the 
norm of the space 2 ( )L Ω . According to Parseval’s 
equality, the norm of this gradient is equal to 

 

2

2
2 ( )

2[ , ]
=1 0

1( , ) ( )
t

t sk
x L L L

k
w t e s ds

L
λ ν

∞
− −

−

 
′⋅ = ≤ 

 
∑ ∫

2 2

2 2
2 2

=1

1 1 1' ' .
6L L

k k
ν ν

π

∞

=∑  

 
The fact that the function ( , )w x t  is a 

generalized solution in the sense of the integral 
identity (3.5) of monograph [25] immediately 
follows from Parseval’s equality. 

Lemma is proved. 
Using the condition (5) and the solution of the 

mixed problem (8), we can write 
 
 

( )

=1 0

1( ) = (1 ( 1) ) ( ) ,
t

t sk k

k
t e s ds

L
λφ ν

∞
− −− −∑ ∫      (9) 

 

where 
2 2

2=k
k

L
πλ . 

Let us introduce the function 
 

=1
( ) = , > 0,tk

k
k

B t e tλβ
∞

−∑               (10) 

 
 where kβ  is defined as  
 

1 ( 1)= .
k

k L
β − −

 

 
Then equality (9) takes the form 
 

0

( ) ( ) = ( ), > 0.
t

B t s s ds t tν φ−∫         (11) 

 
The resulting Volterra integral equation (11) is 

the main equation for admissible control ( )tν . 
Lemma 3.2. The following estimate holds for 

the kernel ( )B t : 
 

0 < ( ) , 0 < 1,CB t t
t

≤ ≤  

 
where function ( )B t  is defined by (10). 

Proof. For any > 0q  consider the following 
relations:  

 
1

2 2 2[ ] [ ]

=1 =1 1

= =
n

qn q s q s

n n n

e e ds e ds
+ ∞∞ ∞

− − − =∑ ∑ ∫ ∫  

2 2 2( [ ] )

1

= ,qs q s se e ds
∞

− −∫  

 
where [ ]s  is an integer part of ,s and 1.s ≥  

 It is clear that  
 

2 2( [ ] ) ( [ ])( [ ]) 2= .q s s q s s s s qse e e− − + ≤  
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Then we obtain the estimate  
 

2 2 2 2( [ ] ) 2

1 1

qs q s s qs qse e ds e ds
∞ ∞

− − − +≤ =∫ ∫
2( 1)

1

.q q se e ds
∞

− −∫  

 
Hence, for 0 < constq ≤ we get  
 

2 2 2 2( [ ] )

=1 1

qn qs q s s

n
e e e ds

∞∞
− − −≤ ≤∑ ∫  

2

0

.q qs Ce e ds
q

∞
− ≤∫                    (12) 

 
As is well known,  
 

 
1 ( 1) 2= .

k

k L L
β − −

≤                    (13) 

 
Thus, we obtain the following estimate by using 

estimates (12) and (13): 
 

=1 =1

20 < ( ) = t tk k
k

k k
B t e e

L
λ λβ

∞ ∞
− −≤∑ ∑ .C

t
≤  

 
Lemma 3.2 is proved. 
  
4. Proof of Theorem 2.1 
 
It o establish the existence of a solution to 

equation (5), and thus prove Theorem 2.1, we must 
first show that the Volterra integral equation of the 
first kind (11) admits an admissible solution. In this 
section, we provide a detailed analysis of Volterra 
integral equation (11) and prove the existence of its 
solution. 

For the function ( )tν , we know that its Laplace 
transform is 



0

( ) = ( ) ,ptp e t dtν ν
∞

−∫  

 
 where =p iσ ζ+ , > 0σ , ζ ∈ . 

After that, by applying the Laplace transform to 
the integral equation (11), we get 

 



0 0

( ) = ( ) ( )
t

ptp e B t s s dsdtφ ν
∞

− −∫ ∫  = ( ) ( ).B p pν  

 

Then we can write  
 







( )( ) = ,
( )
pp

B p
φν  

 
and for =p iσ ζ+ , we get 
 





1 ( )( ) =
2 ( )

i
pt

i

pt e dp
i B p

σ

σ

φν
π

+ ∞

− ∞

=∫  

= 




( )1 ( ) .
2 ( )

i ti e d
B i

σ ζφ σ ζ ζ
π σ ζ

+∞
+

−∞

+
+∫            (14) 

 
Lemma 4.1. For the Laplace transform of the 

function ( )B t , the following estimate holds: 
 



2
| ( ) | , > 0, ,

1
CB i σσ ζ σ ζ
ζ

+ ≥ ∈
+

  

 
where > 0Cσ  is a constant only depending on σ . 

Proof. We can express the Laplace transform of 
the function ( )B t  as follows 

 



( )

=10 0

( ) = ( ) = p tpt k
k

k
B p B t e dt e dtλβ

∞ ∞∞
− +− =∑∫ ∫

=1
.k

k kp
β
λ

∞

+∑  

 
 Then, when =p iσ ζ+  in the above equality, 

we can write 



=1
( ) = k

k k

B i
i

βσ ζ
σ λ ζ

∞

+ =
+ +∑  

2 2 2 2
=1 =1

( )=
( ) ( )

k k k

k kk k

iβ σ λ βζ
σ λ ζ σ λ ζ

∞ ∞+
− =

+ + + +∑ ∑
 ( ) ( ),ReB i iImB iσ ζ σ ζ+ + +  

 
where ( )ReB iσ ζ+  and Im ( )B iσ ζ+ are as 
follows 



2 2
=1

( )( ) = ,
( )

k k

k k

ReB i β σ λσ ζ
σ λ ζ

∞ +
+

+ +∑  

and  
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

2 2
=1

( ) = .
( )

k

k k

ImB i βσ ζ ζ
σ λ ζ

∞

+ −
+ +∑  

 
We can see that the following inequality holds  
 

2 2 2 2( ) (( ) 1)(1 ).k kσ λ ζ σ λ ζ+ + ≤ + + +  
 
 Therefore, we obtain 
 

2 2 2 2

1 1 1 .
( ) 1 ( ) 1k kσ λ ζ ζ σ λ

≥
+ + + + +

    (15) 

 
Then, using the inequality (15), we obtain the 

following estimates:  
 



2 2
=1

( )| ( ) |=
( )

k k

k k

ReB i β σ λσ ζ
σ λ ζ

∞ +
+ ≥

+ +∑  

 1,
2 2 2

=1

( )1 = ,
1 ( ) 1 1

k k

k k

C σβ σ λ
ζ σ λ ζ

∞ +
≥

+ + + +∑  (16) 

 and  



2 2
=1

| ( ) |=| |
( )

k

k k

ImB i βσ ζ ζ
σ λ ζ

∞

+ ≥
+ +∑  

 2,
2 2 2

=1

| || | = ,
1 ( ) 1 1

k

k k

C σ ζβζ
ζ σ λ ζ

∞

≥
+ + + +∑  (17) 

 
 where 1,C σ  and 2,C σ  are defined as follows  
 

1, 2,2 2
=1 =1

( )= , = .
( ) 1 ( ) 1

k k k

k kk k

C Cσ σ
β σ λ β
σ λ σ λ

∞ ∞+
+ + + +∑ ∑  

 Using estimates (16) and (17), we obtain the 
required estimate  

 


2
| ( ) | ,

1
CB i σσ ζ
ζ

+ ≥
+

                (18) 

 
 where 1, 2,= ( , )C min C Cσ σ σ  is bounded for all 

> 0σ .  
Lemma 4.1 is proved. 
If we proceed to the limit as 0σ →  in the 

equality (14), we have  
 

 




1 ( )( ) = .
2 ( )

i tit e d
B i

ζφ ζν ζ
π ζ

+∞

−∞
∫                 (19) 

Also, to prove Theorem 2.1, we need the 
following lemma. 

Lemma 4.2. [8] Let ( ) ( )t W Mφ ∈ . Then, the 
following inequality holds for the Laplace transform 
of the function ( )tφ :  

 



2
1 2 ( )2

| ( ) | 1 ,
W R

i d Cφ τ ζ ζ φ
+∞

+−∞

+ ≤∫    

 
where the constant 1C  is positive. 

 We now present the proof of Theorem 2.1. 
Proof of Theorem 2.1. First, we prove 

1
2 ( )Wν +∈  . Using estimate (18) and equality (19), 

we obtain  



2 2| ( ) | (1 | | )dν ζ ζ ζ
+∞

−∞

+ =∫




2

2( ) (1 | | )
( )
i d

B i
φ ζ ζ ζ

ζ

+∞

−∞

+ ≤∫  



2 2 21 | ( ) | (1 | | )i d
C

φ ζ ζ ζ
+∞

−∞

≤ +∫
2

2 ( )2
= .

W
const φ 


 

 
Now, we show that the function ( )tν  satisfies 

the Lipschitz condition. Actually,  
 

2
| ( ) ( ) | = ( ) .

t

L
s

t s d t sν ν ν ξ ξ ν′ ′− ≤ −∫    

 
Using (18), (19) and Lemma 4.2, we have the 

following estimate:  
 





1 | ( ) || ( ) |
2 | ( ) |

it d
B i
φ ζν ζ

π ζ

+∞

−∞

≤ ≤∫  



21 | ( ) | 1
2

i d
C

φ ζ ζ ζ
π

+∞

−∞

≤ + ≤∫  

1
2 ( )22 W

C
C

φ
π +

≤  


1 = 1,

2
C M

Cπ
≤  

whre  

1

2= .CM
C
π

 

Theorem 2.1 is proved. 
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5. An example 
 
Let us now examine the function that follows:  
 

2

0, for 0;
( ) =

, for > 0,t

t
t

H t e t
φ −

≤



           (20) 

 
 where > 0H  is a constant number. The average 
temperature in the thin rod is the function ( )tφ in its 
physical sense.  

Assume that = 1a  and = 1L  in equation (1). 
Then the function ( )B t  determined by equality (10) 
is as follows:  

 

=1
( ) = (1 ( 1) ) , > 0,tk k

k
B t e tλ

∞
−− −∑  

 
where 2 2=k kλ π . 

We can represent the kernel ( )B t  in the form  
 

1

=3
( ) = 2 (1 ( 1) ) tt k k

k
B t e e λλ

∞
−− + − −∑  

( ) 23 11
1= (2 (1) ), = .tte O e λ λλ λ π− −− +  

 

Consequently, we can write 
2

( ) 2 tB t e π−
  for 

> 0t . 
In this instance, the approximation can be used 

in place of the primary integral equation (11)  
 

2 ( ) 2

0

2 ( ) = , > 0.
t

t s te s ds H t e tπ ν− − −∫  

 
 Using the Laplace transform, we may solve the 

aforementioned integral equation as follows  
 



2

3( ) = .
( 1)
pp H
p

πν +
+

 

 

Thus, we define the original function ( )tν , 
which is the solution of the integral equation, as  

 
2 2( ) = ( ( 1) ).tt H e t tν π− + −           (21) 

 
 It is known that (0) = 0ν . We set  
 

2 2( ) = ( ( 1) ), > 0.tf t e t t tπ− + −  
 
 Note that ( ) = 0limt f t→∞ . Let the function 

( )f t  reach its maximum value at the point *.T  
Therefore, we can write  

 
*max ( ) = ( ) = ,f t f T A  

 
where = > 0A const .  

If we take as 
1H
A

≤ , then we have the 

following estimate:  
 

| ( ) | | ( ) | 1.t H f t H Aν ≤ ≤ ≤  
 
Thus, when the average temperature in the rod is 

given by equation (20), we found the control 
function ( )tν  in the form (21) and verified that it is 
admissible. 

 
Conclusion 
 
The control of the heat conduction equation with 

periodic boundary condition was examined in this 
article. The provided mixed issue was reduced to the 
Volterra integral equation of the first type using the 
separation of variables approach. The Laplace 
transform method was used to demonstrate the 
presence of admissible control, which is the solution 
to the integral problem. 
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