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Evolution of isolated white dwarfs 

 
Abstact. We consider evolution of isolated general relativistic uniformly-rotating white dwarfs which lose angular 
momentum via magnetic dipole braking. We show for selected constant mass sequences how the main parameters of 
white dwarfs such as the central density, mean radius and magneticfield change with time by fullling all stability 
criteria of the general relativistic uniformly-rotating congurations. Namely, we explicitly demonstrate that all 
isolated white dwarfs by angular momentum loss will be shrinking in order to reach stable equilibrium states. 
Key words: rotating white dwarfs, equilibrium configurations, angular momentum loss, magnetic dipole braking, 
constant mass sequence. 

 
 
Introduction 
 
Rotating white dwarfs (RWDs), depending on 

their mass, i.e., whether they are sub-
Chandrasekhar white dwarfs (WDs) or super-
Chandrasekhar WDs, display different behavior. 
Namely, both uniformly and differentially rotating 
super-Chandrasekhar white dwarfs (SCWDs) spin-
up by angular momentum loss whereas sub-
Chandrasekhar WDs only spin-down by angular 
momentum loss. We should mention that the spin-
up of rapidly-rotating stars was rst described by 
Shapiro et al. [1] and later by Geroyannis and 
Papasotiriou [2]. In both references [1] and [2] the 
authors performed computations in classical 
physics without taking into account theeffects of 
general relativity (GR) although GR is verycrucial 
in investigating the stability of RWDs [3]. 

In our recent work [4], we computed general 
relativistic congurations of uniformly RWDs 
within Hartle’s formalism [5]. We used the 
relativistic Feynman-Metropolis-Teller equation of 
state [6, 7] for WD matter, which generalizes the 
traditionally-used equations of state of Chandra-
sekhar [8] and Salpeter [9] as follows: (1) in order 
to guarantee self-consistency with a relativistic 

treatment of the electrons, the point like assumption 
of the nucleus is abandoned, introducing a nite-
sized nucleus; (2) the Coulomb interaction energy 
is fully calculated without any approximation by 
solving numerically the relativistic Thomas-Fermi 
equation for each given nuclear composition; (3) 
the inhomogeneity of the electrondistribution inside 
each Wigner-Seitz cell is accountedfor; (4) the 
energy density of the system is calculatedtaking 
into account the contributions of the nuclei, ofthe 
Coulomb interactions, as well as of the relativistic 
electrons to the energy of the Wigner-Seitz cells; 
and (5) the β equilibrium among neutrons, protons, 
and electrons is also taken into account, leading to a 
self-consistent calculation of the threshold density 
for triggeringthe inverse β decay of a given nucleus. 
The stabilityof rotating WDs [4] was analyzed 
taking into account themass-shedding limit, inverse 
β-decay instability, and secular axisymmetric 
instability, with the last being determined by using 
the turning point method of Friedman et. al. [10]. 

In this work, we consider compression of 
isolated rotating WDs by angular momentum loss 
based on the results of Boshkayev et al. [4, 11-17]. 
Particularly, by fullling all the stability criteria for 
RWDs in GR we estimate the change intime of the 
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basic parameters of rotating WDs. We consider two 
cases: (1) we assume that dipolar magnetic 
isconstant throughout the entire evolution of WDs, 
and (2) for the sake of comparison, we adopt 
magnetic uxconservation relaxing the constancy 
of the magnetic eld. 

Our paper is organized as follows: In Section II, 
we calculate the main physical parameters of 
isolated rotating WDs by angular momentum loss. 
In Section III, we summarize ourmain results, 
discuss their signicance, and draw our 
conclusions. 

 
Evolution of isolated rotatingWDs 
 
To investigate the evolution of isolated white 

dwarfswith time we made use of the equation for 
the rotational energy loss of pulsars via magnetic 
dipole brakingand depending on whatparameter we 
are interested in, this equation was slightly-
modied. For example, if we want to see how the 
centraldensity of the WD evolves with time we 
need to rewritethe equation for the rotational energy 
lossin the following form 
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and � is the speed of light in vacuum,�� is the 
dipole magnetic field, 〈�〉 � �1 3� �������� �
������������� is the mean radius, � is angular 
velocity, � is the angular momentum, � is the 
central density of a white dwarf .The values of 
〈�〉 � 〈�〉���,� � ���� and � � ����are calculated 
along a given constant baryon (rest) masssequence. 
Here we adopt carbon white dwarfs using the 
Feynman-Metropolis-Teller equation of state like in 
reference [17]. According to [11-17] there are 
limiting values of all the parameter of rotatingWDs 
on the borderof the stability region. These limiting 
values determinethe range of integration of the 
central density �. Performing numerical integration 
of Eq. 1for each momentof time we obtain the 
evolution of the central densitywith time. To 
account for the magnetic ux conservation relaxing 
the constancy of the magnetic eld we use 
following expression 
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where �� is the surface dipole magnetic eld 
corresponding to the initial value of � at � � �, 
〈��〉 is the mean radius corresponding to the initial 
value of 〈�〉 at � � �. Substituting � in Eq. 1we 
obtain an equation that describes the evolution of � 
with time taking into account the magnetic ux 
conservation. Clearly, in figure 1 we see the main 
difference between two cases. In both cases WDs 
will increase their central density and will be 
compressed by losing angular momentum. 
However in the case with the magnetic ux 
conservation the value of � will be increasing due 
to the compression thus causing more torque and 
evolving faster with respect to the �=constant case. 
 

 
 

Figure 1 – Central density versus time. Solid curves are 
 the evolution path for selected constant mass sequences 

 when  B is constant. Dashed curves are the evolution path  
for constant mass sequences when the magnetic 

 ux is constant with B0 = 106G. 
 
 
In order to estimate how the mean radius of the 

WD evolves with time we need to rewrite Eq. 1as 
follows 
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where now 

 
� � ��〈�〉�,   � � ��〈�〉�.           (5) 

 
The values of � � ��〈�〉�, and � � ��〈�〉� are 

calculated along a given constant rest mass 
sequence like in the previous case. Here the range 
of integration of 〈�〉 is also dened along the 
constant rest mass sequence on the border of the 
stability region. 
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Figure 2 –Mean radius versus time. Solid curves are  the 
evolution path for selected constant mass sequences  

when B is constant. Dashed curves are the evolution path 
for constant mass sequences when the magnetic ux is  

constant with B0 = 106G. 

The procedure to estimate the evolution of other 
parameters of rotating WDs is analogous to the 
central density with Eq. 1and to the mean radius 
with Eq. 4. To take into consideration the magnetic 
ux conservation we need to use Eq. 3. In figure 2 
the mean radius is plotted as a function of evolution 
time. Over the course of time the mean radius 
decreases, hence WDs shrink with time. For the 
case of the conserved magnetic ux it decreases 
faster than for the case with constant surface 
magnetic eld. Note, that for isolated rotating white 
dwarfs the rest mass remains unchanged over the 
course of time.  

Isolated WDs regardless of their masses will 
always lose their angular momentum via magnetic 
dipole braking. By losing angular momentum WDs 
tend to reach more stable congurations by 
increasing their central density and by decreasing 
their mean radius. Eventually super-Chandrasekhar 
WDs will spin-up and sub-Chandrasekhar WDs 
spin-down [12]. 

Figure 3 – Magnetic eld versus time. The eld is obtained 
through the magnetic ux conservation law 

Figure 3 shows how the surface dipolar 
magnetic eld changes with time for the conserved 
magnetic ux. Here we selected three different 
constant rest masses. B increases as a result of the 
WD compression. This means that at certain point 
of their evolution WDs with “smaller” masses, but 
still super-Chandrasekhar WDs can possess high 
magnetic elds. 

Conclusions 

In this work, we showed how the basic 
parameters of isolated (solitary) rotating WDs 
evolve with time by angular momentum loss. For 
the sake of comparison we considered two cases 
with constant magnetic eld and constant magnetic 
ux. For the magnetic ux conservation the 
evolution time (life time) turned out to be shorter 
than for the constant magnetic eld. 

We showed that WDs regardless of masses by 
angular momentum loss via electro-magnetic 
radiation will tend to get more stable 
configurations. Thus their central densities increase, 
and mean radii decrease. Hence all solitary WDs 
will shrink over their entire evolution. Super-
Chandrasekhar WDs will end up exploding like 
supernovae type Ia or collapse into neutron stars, 
and sub-Chandrasekhar WDs will be slowing down 
until they completely stop rotating. 

Throughout the paper, we performed 
computations in GR by using the Hartle formalism 
for uniformly-rotating congurations. We 
considered mainly WDs consisting of carbon, 
although the typical white dwarfs are known not to 
consist of a pure chemical element, but a mixture of 
elements such as carbon, oxygen, neon, 
magnesium, etc. It would be interesting to consider 
the chemical proles of Renedo et al. [18] in our 
future investigations. 

Acknowledgments 

This work was supported in part by grant 
№IPC-30 of MES of the RK. 

References 

1. Shapiro S.L., Teukolsky S.A., Nakamura T.
Spin-up of a rapidly rotating star by angular 
momentum loss // Astrophysical Journal Letters.–
1990. – Vol. 357. – P.17-20. 

2. Geroyannis V.S., Papasotiriou P.J. Spin-up
and Spin-down of Rotating Magnetic White 



36 Evolution of isolated white dwarfs

International Journal of Mathematics and Physics 5, №2, 33 (2014)

Dwarfs: A Straightforward Numerical Approach // 
Astrophysical Journal. – 2000. – Vol. 534. – Issue 
1. – P. 359-366. 

3. Shapiro S.L., Teukolsky S.A. Black holes, 
white dwarfs, and neutron stars: The physics of 
compact objects. – New York: Wiley-Interscience, 
1983. – 672 p. 

4. Boshkayev K., Rueda J., Ruffini R., Siutsou 
I. On General Relativistic Uniformly Rotating 
White Dwarfs // Astrophysical Journal.–2013. – 
Vol.762. – Issue 2. – P. 117. 

5. Hartle J. B. Slowly Rotating Relativistic 
Stars. I. Equations of Structure //Astrophysical 
Journal. – 1967. – Vol. 150. – P. 1005. 

6. Rotondo M., Rueda J. A., Ruffini R., Xue S.-
S. Relativistic Thomas-Fermi treatment of 
compressed atoms and compressed nuclear matter 
cores of stellar dimensions // Physical Review C.–
2011. – Vol. 83. – Issue 4. – P. 045805. 

7. Rotondo M., Rueda J.A., Ruffini R., Xue S.-
S. Relativistic Feynman-Metropolis-Teller theory 
for white dwarfs in general relativity // Physical 
Review D. – 2011. – Vol. 84. – Issue. 8. – 
P.084007. 

8. Chandrasekhar S. The Maximum Mass of 
Ideal White Dwarfs // Astrophysical Journal.–
1931.–Vol. 74. – 81 p. 

9. Salpeter E. E. Energy and Pressure of a Zero-
Temperature Plasma // Astrophysical Journal. –
1961. – Vol. 134. – 669 p. 

10. Friedman J.L., Ipser J.R., Sorkin R.D. 
Turning-point method for axisymmetric stability of 
rotating relativistic stars. // Astrophysical Journal: 
Part 1. – 1988. – Vol. 325. – P. 722-724. 

11. Boshkayev K., Rueda J., Ruffini R., 
Siutsou I. General Relativistic White Dwarfs and  
 

Their Astrophysical Implications // Journal of the 
Korean Physical Society. – 2014. – Vol. 65. – Issue 
6. – P. 855-860. 

12. Boshkayev K. Spin-up and spin-down 
evolution in general relativistic rotating white 
dwarfs. // International Journal of Mathematics and 
Physics. – 2013. – Vol.4. – № 1. – P. 62-66. 

13. Boshkayev K. Lifetime of uniformly 
rotating Super-Chandrasekhar mass white dwarfs // 
International Journal of mathematics and physics.  
–2013. – Vol. 4. – № 2. – P. 59-63. 

14. Boshkayev K. Non-rotating and slowly 
rotating stars in classical physics // International 
Journal of mathematics and physics. – 2014. – 
Vol.5. – № 1. – P. 69-80. 

15. Boshkayev K., Rueda J.A., Ruffini R. On 
the maximum mass of general relativistic uniformly 
rotating white dwarfs // International Journal of 
Modern Physics E. – 2011. – Vol 20. – Issue 1. – 
P.136-140. 

16. Boshkayev K., Rueda J.A., Ruffini R. On 
the maximum mass and minimum period of 
relativistic uniformly rotating white dwarfs // 
International Journal of Modern Physics: 
Conference Series. – 2013. – Vol 23. – P. 193-197. 

17. Boshkayev K., Izzo L., Rueda, J.A. Ruffini, 
R. SGR 0418+5729, Swift J1822.3-1606, and 1E 
2259+586 as massive, fast-rotating, highly 
magnetized white dwarfs // Astronomy & 
Astrophysics. – 2013. – Vol.555. – P.A151. 

18. Renedo I., Althaus L.G., Miller Bertolami 
M.M., Romero A.D., Corsico A.H., Rohrmann 
R.D., Garcia-Berro E. New Cooling Sequences for 
Old White Dwarfs // Astrophysical Journal. – 2010. 
– Vol. 717. – P 183-195. 

 
 

 
 


	мат-физ-2-2014 (1) 33
	мат-физ-2-2014 (1) 34
	мат-физ-2-2014 (1) 35
	мат-физ-2-2014 (1) 36



