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Abstract. In this paper we investigate a boundary inverse problem of a second order differential operator with integral 
boundary conditions in L���� ��, where � � �. A boundary inverse problem of spectral analysis is the problem of 
recovering boundary conditions of the operator by its spectrum and some additional data. Usually, as the additional 
spectral data takes the spectral function of the operator as it occurred in the famous work of I.M. Gelfand and B.M. 
Levitan. In other cases, as additional data perform spectra of some related operators. We research inverse problem of 
spectral analysis of second order differential operators with integro–differential boundary conditions. In this case, it is 
necessary to find from the spectral data not only coefficients of the differential expression, also, we need to find 
boundary functions of the integro–differential boundary conditions. Coefficient inverse problems are well studied. 
Therefore in this paper we study the issue of reconstruction of boundary functions. As a main result a uniqueness 
theorem of the inverse boundary problem in L���� �� was proved. 
Keywords: boundary inverse problem, uniqueness theorem, differential operator, integro–differential boundary 
condition, spectral analysis, spectrum, eigenfunction, associated function, basis, conjugate system, biorthogonal system 

 
 
 Introduction  
 
A boundary inverse problem of spectral analysis 

is the problem of recovering boundary conditions of 
the operator by its spectrum and some additional data. 
Usually, as the additional spectral data takes the 
spectral function of the operator as it occurred in the 
famous work of I.M. Gelfand and B.M. Levitan [6]. In 
other cases, as additional data perform spectra of 
some related operators. Similar approach can be seen 
in the works of L.S. Leibenson [10] and V.A. Yurko 
[20]. In the works of V.A. Marchenko [11] additional 
spectral data is the scattering data. 

Note that differential operators on the interval 
depending on the type of boundary conditions are 
divided into operators with local or nonlocal 
boundary conditions. For example, standard 
Dirichlet and Neumann boundary conditions refer 
to the local boundary conditions, while periodic 
boundary conditions are nonlocal. In the 
monograph [11] local boundary conditions are 
called splitting, and nonlocal two–point boundary 
conditions are called nonseparated boundary 
conditions. As is known, operators with splitting  

 
boundary conditions is much easier to recover from 
the spectral data. Less developed recovery 
techniques of differential operators with 
nonseparated boundary conditions. Reconstruction 
of second order differential operators with 
nonseparated boundary conditions can be found in 
works V.A. Sadovnichii and his students [15, 16,  
2,  3].  

In this paper we investigate the inverse problem 
of spectral analysis of second order differential 
operators with integro–differential boundary 
conditions. In this case, it is necessary to find from 
the spectral data not only coefficients of the 
differential expression, also, we need to find 
boundary functions of the integro–differential 
boundary conditions. Coefficient inverse problems 
are well studied. Therefore in this paper we study 
the issue of reconstruction of boundary functions. 

Now we proceed to accurate formulation of the 
boundary inverse problem of spectral analysis of 
the differential operator on the interval. To do this, 
let us first consider the direct problem of spectral 
analysis. 
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Direct problem 
Let � � � and in L���� �� there is given the 

operator �  generated by the second order 
differential expression  
 

���� � ������ � ���������			� � � � � 

 
with smooth coefficient  
 

� ∈ ���� ��� 
 
and boundary conditions 

 
 
 ����� � ����� � ∑ 	��

��� � 	�� ��������������� � ��			� � ���� (2) 
 where  
 
 ����� � ���������� � ����������� 
 
and ��� �� are some numbers, ��� ∈ L���� ��. 
In what follows, we assume that boundary 

conditions (2) are normed and regular (strongly 
regular) in A.A. Shkalikov sense (see [2]). 

Then we have  
Theorem 1. [2] Eigen– and associated 

functions of the operator � with regular (strongly 
regular) boundary conditions (2) are Riesz basis 
with brackets (Riesz basis) in ����� ��.   

Note, that there exist the set of functions 
��� ∈ L���� ���			� � �� ��  such that boundary 
conditions (2) will be equivalent to the conditions  

  
����� � ����� � � 	�� ����������� � ��			� � ���� (3) 

 
 as functionals  
 
 Φ������ � ∑ 	��

��� � 	�� ����������������			� � ��� 
 
 
are continuous in L���� ��. 
Hereinafter, functions ��� ��  will be called 

boundary functions. 
Consider the spectral problem  
 

���� � ������			� � � � � 
 
 with boundary conditions (3). 
Direct problem of spectral analysis (3)–(4) is 

investigation the geometry of location of 
eigenvalues and completeness, minimality and 
basis property of the corresponding system of root 
functions in the space L���� ��. Since if the system 
of eigen– and associated functions of problem 
(3)–(4) is Riesz basis with brackets (Riesz basis) in 
L���� �� , then (see [3]) there is a unique 
biorthogonal system, and the conjugate system is 
also Riesz basis with brackets (Riesz basis) in 
L���� ��. 

Statement of the boundary inverse problem 
It needs to find three functions from the spectral 

data to completely restore the boundary value 
problem (3)–(4):  

�	��		���	�����������		����	���� 
��� ��	���		��������		���������	� 

 
In this paper we study the partial inverse 

problem. Let the coefficient of the equation (4) is 
well–known. By the spectral data it needs to restore 
only boundary functions. It remains to clarify what 
we understand by the spectral data. So the spectral 
data of the boundary value problem (3)–(4) is 
spectra of the following boundary value problems. 

First boundary value problem.  
 

���� � �����			� � � � �� 
 

����� � � 	
�

�
����������� � �� 

 
����� � �� 

 
Second boundary value problem.  
 

���� � �����			� � � � �� 
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����� � � 	
�

�
����������� � 0,			� � �,�� 

 
The main result is a theorem of the uniquely 

reconstruction of boundary functions from the 
spectra of indicated boundary value problems. More 
precise formulation of the result is given below. 

Necessary formulations and statements 
Let � � � � �. Introduce a function ����, ��, 

which satisfies the equation  
 
����� � �����, ��,			0 � � � � (5) 
 

and boundary conditions 
 

������ � �� 	
�

�
����, ��������� � 0,		 

 
	� � �, � � � , � � �, 

 
������ � Δ������,  

 
������ � 0,			� � � � �, � � � ,�, 

 
 where  

 
 

Δ������ � �������Δ���� 	 � 	����E���Δ���� � � �� ��, �� �� �, � � �, � � � , � � � ��, 
 

����, �� �

� ����
����, �� � ������, �� ����, ��
Δ���� � � � ��, �� � � �� � ����, �� � �� � ��, �� �⋮ ⋱ ⋮ ⋮
�� � ��, ���� � � Δ���� � � � ����, ���� � �� � ��, ���� �

� , (9) 

 
 
 E� is the � � � unit matrix and ��,�� is the 

inner product in L��0, �� . Here ��������  is the 
fundamental system of solutions of the equation 
���� � ��, elements of which satisfy conditions  

  
������ � ���Δ����,			�, � � �,�, 

 
Δ���� � ����� ������� �, � � �,� ��, 

 

����, �� 		� �������� �����, ��	����, ��������	������ �, 
 
where ��� is the Kronecker symbol, ��������  is 

the fundamental system of solutions of the equation 
���� � ��, elements of which satisfy conditions  

 
��������0� � ���,			�, � � �,�� 

 
To check the relation (9), it is sufficiently to 

show that the right–hand of (9) satisfies all 
conditions, which satisfies the function ����, ��. 

If � � � then conditions (8) absent. If � � � 
then conditions (6) absent. 

 

Corollary 1. The functions 
����, ��, ����, ��, ����, ��  are entire functions 
respect to �  for all � � �,�.   

So, in what follows we admit that the following 
condition is valid. 
А) Spectra of any two boundary value problems 

do not intersect, that is  
 
|Δ����|� � |Δ����|� � 0 

 
for all � � � and � � �. 

 
Syne a function identically not equal to zero 

have either a finite number or a countable number 
of zeros without finite limit points, let us denote by  

 
|�����| � |�����| �� � �, 

 
zeros of the function Δ����. The entire function 

Δ����  equal to 1 at � � 0 , hence satisfies this 
condition. Zeros of an entire function can be have 
finite multiplicity. Denote by ����� the multiplicity 
of eigenvalue �����, i.e.  
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Δ����������� � �				��				� � �,�, � � � , ����� � �,
Δ����

����������� � ��
 (10) 

 
Let us introduce below two systems of functions. Let � � � � �. Then for every � we put  
 

 

��,���� � ����, ������,			� � �,
����,���� � �

��
�
�� ����, ����������,			� � �,

……… ,
����������,���� �

�
����������

��������
���������

����, ����������,			� � ��

 (11) 

 
 
From (9) follows, that ����, �� depends only 

on ��, � � � , ���� . Thus, if boundary functions 
��, � � � , ����  and zeros of Δ����  are well–known 
then the system (11) is completely defined. 

Proposition 1. For a fixed admissible � and 
�  the system of functions (11) is a chain of 
eigenfunctions and associated functions 
corresponding to the eigenvalue �����, i.e. ��,���� 
eigenfunction of � th boundary problem and 
����,����  associated functions of the same 
problem for all � � �,… , ����� � �.    

 
Proof. We note, that the function ����, �� is a 

solution of the equation  
 

������, ��� � �����, ��,				� � � � � 
 

and satisfies boundary conditions 
 

������ � � 	�� ������������ � �,			� � �, � � � , � � �,
������ � � 	�� ������������ � Δ����,
������ � �,			� � � � �, � � � , ��

 (12) 
 
By using the relations ���� from ����, we get 

Proposition 1. For example, let us check 
Proposition 1 for u�,���� . In the relation ���� 
substitute � � ����� , and take into account first 
relation from ����. Then  

 
����,�� � �������,�,				� � � � � 

 

�����,�� � � 	
�

�
����,��������� � �,			� � �, � � � , �, 

 
�����,�� � �,			� � � � �, � � � ,�� 

 
Other relations for ����,���� verify similarly. 

Only needs to differentiate by � required number 
times and instead of � substitute �����. 

Proposition 1 is proved.  
Proposition 2. The solution of the 

inhomogeneous equation  
 

���� � ����� � ����,			� � � � � 
 

with the boundary conditions 
 

����� � � 	�� ����������� � �,			� � �, � � � , �,
����� � �,			� � � � �, � � � ,�

given by the formula\ 
 
���, �� � � 	�� ����, �, ��������, 
 
 where  

����, �, �� � ����� ��	
�

���
������

��

� 

 

�
�
�
����, �� ����, �� … ����, �� ����, �, ��
����� � … � ������
������ ����� … � ������… … ⋱ … …
������ ������ … ����� ������ �

�
, 
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����, �, ��  is the Green function of the 

boundary value problem  
 

���� � �����,			� � � � � 
 

with the boundary conditions  
 

����� � �,			� � �,�. 
 

Here �����, . . . , �����  are forms of the 
boundary conditions (13).   

Proof. Proposition 2 proves by checking the 
equation and the boundary conditions.  

Corollary 2. From Proposition 2 follows that 
the Green function ����, �, �� has the form  

 
 ����, �, �� � ∑ 	���� �����������, ������, �� � ����, �, ��, 
 
where the determinant ��  is taken by 

substitution the first row of determinant �� with  
 

��, . . . ,�,�,�, . . . ,��, 
 
where unit on the �th place.   

Let us calculate the reduce of the Green 
function ����, �, ��  at the singular point ����� . 
Indeed, it is related to the kernel of the projection 
onto the root subspace of the corresponding 
eigenvalue �����. The equality  

 
 ������������, �, �� � ������������

�������, ������, ��, (15) 
 
 holds, since by the condition A) spectra of considered boundary value problems are not intersect and, 

therefore the remaining terms have zero residues at ����� . Indeed, the function ����, �, �� meromorphic 
respect to � but does not have a pole at �����. Similarly, we can prove that the meromorphic function ����, �� 
for � � � regular at �����. 

By using the equality (11), as a result from (15) we get  
 

 ������������, �, �� � ∑ 	�������
��� ����,����������������,����, 

where  

 ������������,���� �
�

������������
lim

�������
����������
�����������

��� � ��������
���������, ���. (16) 

 
 
Proposition 3. The system of  functions 

�����,�,			� � �,�, . . . , ����� � ��  is conjugate 
system to the system �����,�,			� � �,�, . . . , ����� �
�� in ����, ��, i.e.  

 
� ����,�, ������������,� �� ���, 

 
where ��� is the Kronecker symbol.    
Proof. The proof of Proposition 3 follows from 

M. Riesz’s theorem of projectors onto the root 
subspace, which are calculated as residue of 
resolvent. In our case, instead of resolvent we have 
the function ����, �, ��  corresponding to the 
boundary value problem.  

Remark. In Proposition 3 biorthogonality 
proved for root functions from the same root 

subspace. If the root subspaces corresponding to the 
different eigenvalues then orthogonality of such 
root subspaces is well–known. 

 
Main result 
The following theorem is the main result of the 

work. 
Theorem 2. Let us given all eigenvalues 

������,			� � �� of the boundary problem  (3)–(4). 
Additionally, assume there are given spectra of else 
one boundary problem ������,			� � ��, which are 
ensue from the initial problem  (3)–(4) by gradual 
zeroing integral perturbations of the boundary 
conditions. Then boundary functions ��, ��  from  
(3) uniquely recover.   

Proof. Suggest a reconstruction algorithm of the 
boundary functions ��, ��. 
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At first, consider the case when eigenvalues 
������,			� � �� have a simple multiplicity for all 
� � � � �. 

 First step. Reconstruction of ��  by the 
spectrum of the first boundary value problem from 
L���, ��. Let us given the sequence of eigenvalues 
������,			� � �� of the first boundary value problem. 
Construct the function ����, �� as a solution of the 
Cauchy problem  

 
����� � �����, ��,			� � � � � 

 
with the condition at zero 
 

������ � Δ����, ������ � �� 
 
Such solution exists for all complex � , in 

particular, for � � �����. Hence, there constructs the 
system of root functions  

 
���,���� � ����, ������, � � ��� 

 
From works A.A. Shkalikov [2] and N.K. Bari 

[3] follow, that this system is Riesz basis with 
brackets (Riesz basis) in L���, ��, and has a unique 
conjugate system, which is also Riesz basis with 
brackets (Riesz basis) in L���, ��. Then the Fourier 
coefficients of the boundary function ��  by the 
system ���,�,			� � �� have the form  

 

� ��,�, �� �� Δ��������
�����

, 
 
as Δ�������� � �  for all � � �  and Δ���� �

Δ���� � � � 	�� ����, ��������� . Since the system 
���,�,			� � ��  is basis, we can construct the 
function �� from L���, ��, i.e.  

 

����� � � 	
�

���

Δ��������
�����

��,����� 
 
 Thus, one of the boundary functions is 

reconstructed. 
 Second step. Reconstruction of ��  by the 

spectrum of the second boundary value problem 
and by known �� from L���, ��. Let us given the 
sequence of eigenvalues ������,			� � ��  of the 
second boundary value problem. Construct the 

function ����, ��  as a solution of the following 
Cauchy problem  

 
����� � �����, ��,			� � � � � 

 
with conditions  

������ � �� 	
�

�
����, ��������� � �,

������ � Δ����� 
 

Hence, constructs the system of eigen– and 
associated functions  

 
���,���� � ����, ������, � � ��� 

 
Then the Fourier coefficients of the boundary 

function ��  by the system ���,�,			� � ��  have 
the form  

� ��,�, �� �� Δ��������
�����

, 
 
as Δ�������� � �  for all � � �  and Δ���� �

Δ���� � � � 	�� ����, ��������� . Since the system 
���,�,			� � ��  is basis, we can construct the 
function �� from L���, ��  

 

����� � � 	
�

���

Δ��������
�����

��,����� 
 
 Thus, the second boundary function is 

reconstructed.  
In the case, when eigenvalues are non simple 

(indeed, formulas (17), (18) slightly become more 
complicated (see (11))), by the analogous 
discussions (except, may be, with technical 
difficulties), we get required assertion. 

Theorem 2 is proved. 
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