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Numerical study of supersonic turbulent free shear layer  

Abstract. Numerical study of two-dimensional supersonic turbulent free shear layer is performed. The system of Fa-
vre-Averaged Naveir-Stokes equations for multispecies flow is solved using ENO scheme of third-order in accuracy. 
The k-ε two-equation turbulence models with compressibility correction are applied to calculate the eddy viscosity 
coefficient. In order to produce the roll-up and pairing of vortex rings, an unsteady boundary condition is applied at 
the inlet plane. At the outflow, the non-reflecting boundary condition is taken. The obtained results are compared 
with available experimental data.  
Keywords: supersonic free shear flow, mixing layer, ENO-scheme, k-ε model, compressibility.   

Introduction  

Compressible mixing layer is an important 
flow in extensive engineering applications. In par-
ticular, the shear layer configuration is a simple 
and yet fundamental to understand how fuel flow 
will mix and combust with supersonic oxidizer 
flow in SCRAM jet engines combustion chambers 
of hypersonic vehicles. As is well known the main 
objectives of investigating the physical processes 
in combustion chamber of these engines is aimed 
to maximize thrust by enhancing the fuel-air mix-
ing and combustion.   

It is necessary to take into account the influ-
ence of gas-dynamical structure, turbulence effects 
and chemical reactions for understanding physical 
structure of fuel-air mixture combustion in numeri-
cal model. Studying combustion in shear layer re-
quires accurate predictions of mixing and combus-
tion efficiency to which special attention should be 
paid to simulation the unsteady behavior of mixing 
layer roll-up and vortex formation. The gas-
dynamical structure of mixing between two paral-
lel super-subsonic flows has been comprehensively 
studied by many investigators. Nowadays, there 
are a large number of works on experimental [1-9], 
analytical [10-11] and numerical [12-27] study of 
this problem in the view of above physical effects 
as separately as with including all of them. Expe-
rimental efforts investigating the roll of large scale 
structures and growth mechanisms in compressible 

mixing layer have been done in sufficient details 
by researchers [1-6]. There are a great deal of re-
searches devoted to the turbulence problem and 
influence of turbulence quantities on the mixing 
and vorticity formation [7-9].  

The behavior of shear layers of perfect gases 
have been entirely realized in mathematical models, 
but the practical design of supersonic ramjet (scram-
jet) engines requires the shear layer growth enhance-
ments for multispecies gases. Successful numerical 
models of such flows with the detail flow physics 
represent a difficult problem. Therefore the investiga-
tors studied some physical phenomena separately or 
proposed the numerical method, which are important 
for solution of this complex system. In [12, 15-16] 
have been modeled the free shear layer flowfield 
structures using the system of compressible Euler 
equations. For example, in [12] have been numerical-
ly studied the supersonic-subsonic free shear layer 
applying high order WENO scheme to the system of 
2D axisymmetric Euler equations and numerical tur-
bulence model taken as a SGS model. During numer-
ical experiment revealed that at high-convective 
Mach number turbulence mixing rates reduces and 
vortex roll-up and pairing suppresses. In [13-14, 17] 
have been performed numerical experiment based on 
the system of Navier-Stokes equations for monatom-
ic (air) gas to study the growth of instabilities in su-
personic free shear layers. Xiao-Tian Shi et al. [17] 
conducted numerical simulations of compressible 
mixing layers based on discontinuous Galerkin me-
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Figure 3 – Comparison of present calculation with experimental data by longitudinal  
mean velocity profiles at five longitudinal positions in the shear layer 

a) x=6, b) x=12, c) x=15, d) x=18, e) x=21 cm. 

a) b) 

c) d) 

e) 
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Figure 4 – Comparison of present calculation with experimental  
data by Reynolds stress at five longitudinal positions in the shear layer 

a) x=6, b) x=12, c) x=15, d) x=18, e) x=21 cm. 

a) b) 

c) d) 

e) 
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Figure 5 – Comparison of present calculation with experimental  
data by turbulent intensity at five longitudinal positions in the shear layer 

a) x=6, b) x=12, c) x=15, d) x=18, e) x=21 cm. 

a) b) 

c) d) 

e) 



8 Numerical study of supersonic turbulent free shear layer 

International Journal of mathematics and physics 5, №1, 4 (2014)

 

thod with inflow perturbation for prediction of the 
flowfield structures obtained in experiments. Numer-
ical experiments of influence of unsteady inflow per-
turbations on the mixing in supersonic free shear lay-
ers on the basis of second and fourth order MacCor-
mack scheme have been performed by authors [13-
14]. Their studies revealed that normal velocity per-
turbation is more efficient than streamwise and 
spanwise. To date rarely performed the numerical 
investigation of growth of instabilities in shear layer 
using unsteady disturbances for multispecies gas 
mixture. In these works  have  accurately predicted 
the gas-dynamical structure of shear layers  by ad-
vanced numerical methods without  chemical reac-
tions terms.   

In the present study, the third order essentially 
non-oscillatory (ENO) finite difference scheme is 
adopted to solve the system of Favre-averaged 
Navier-Stokes equations to supersonic planar shear 
layer. The k-ε two-equation turbulence model with 
compressibility correction is used to predict the tur-
bulence characteristics. To verify the mathematical 
model and numerical algorithm obtained results 
compared with experimental study of Samimy and 
Elliot [8-9] for supersonic-subsonic free shear layer. 

The inflow physical parameters profile across 
the non-premixed hydrogen (fuel) and air stream at 
the splitter plate leading edge is assumed to vary 
smoothly according to a hyperbolic-tangent func-
tion (Fig. 1). 

     

  
 

Figure 1 – An illustration of the flow configuration 
 
 
 

Mathematical model 
 
The two-dimensional Favre-averaged Navier-

Stokes equations for multi-species flow with chem-
ical reactions is: 
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vector fluxes are given as 
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Here, the viscous stresses, thermal conduction, and diffusion flux of species are: 
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Parameters of the turbulence are: 
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where ,k  – turbulent kinetic energy, rate of dissi-
pation of turbulent kinetic energy. kP  – is turbu-
lence production term, tM  – is the turbulence 
Mach number. 

kY  – is the mass fraction of k th species, 
Nk ...1 , with N  -number a components in a gas 

mixture. The thermal equation for multi-species 
gas is: 
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where kW  is the molecular weight of the species. 
The equation for a total energy is given by 
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where the molar specific heat pkC  is given in 

terms of the fourth degree polynomial with respect 

to temperature, consistent with the JANAF Ther-
mochemical Tables [28]. 

The system of the equations (1) is written in 
the conservative, dimensionless form. The air flow 
parameters are  RWhTwu ,,,,,, , hydrogen 
jet parameters are 0000000 ,,,,,, RWhTwu . The go-
verning parameters are the air flow parameters, the 
pressure and total energy are normalized by 2

u , 
the enthalpy by  WTR /0 , the molar specific heat 
by 0R  and the spatial distances by the thickness of 

the splitter plate  .   
The coefficient of viscosity is represented in 

the form of the sum of 
l  - molecular viscosity and 

t  - turbulent viscosity: tl   , where 
t  is 

defined according to k-ε model with compressibili-
ty correction. The mixture averaged molecular vis-
cosity is evaluated using from Wilke's formula. 
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where ),,,,,,,(  kYTpvu k   - is the mo-
mentum thickness. The pressure is assumed to be 
uniform across the shear layer. On the lower and 
upper boundary the condition of symmetry are im-
posed. At the outflow, the non-reflecting boundary 
condition is used [29]. 

In order to produce the roll-up and pairing of 
vortex rings, an unsteady boundary condition is 
also applied at the inlet plane, i.e. 
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According to a principle of construction ENO scheme [30-31] the system (5) for integration on time  is 
formally represented as:  
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Here mE


, mF


 is called the modified flux vector. It consists from the original flux vector ( E~ , F~ and ad-
ditional terms of third-order accuracy  D,E


,  D,E


) :  

 
 1 nnm )DE(E~E 


  ,                                                  (9) 
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modified flux mF


 is written similarly and IAA   , 1  AAA , 1  BBB ,  I - unity matrix.  
Applying factorization to (8), we obtain two one-dimensional operators, which are resolved  by matrix 
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The second term 

nRHS  is written similarly.  
In  approximation  of  derivatives  in  convec-

tive  and  diffusion  terms,  we  use  second-order  
central-difference operators. 

The numerical solution of the system (5) is cal-
culated in two steps. The first determines the dy-
namic parameters and second determines the mass 
species. 



14 Numerical study of supersonic turbulent free shear layer 

International Journal of mathematics and physics 5, №1, 4 (2014)

Then it is necessary to define Jacobian matrix 
which in a case of the thermally perfect gas repre-
sents difficult task. This problem is connected with 
the explicit representation of pressure through the 
unknown parameters. Here pressure is determined 
by introducing an effective adiabatic parameter of 
the gas mixture [34]. 

sm

sm
e
h

  ,    (11) 
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the enthalpy and internal energy of the mixture 
minus the heat and energy of formation; KT 2930  - 

is the standard temperature of formation, which 
allows to write an expression for the pressure 
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The temperature is found from the Newton-
Raphson iteration [32-33, 35]. 

The equations for species are solved by the 
scalar sweep, where in the first-step convection 
and diffusion terms are included and calculated 
using ENO scheme [30-31]. In the second-step, the 
matrix equation with terms ( kkk Ww   ) is 

solved implicitly. These source terms kW  are li-
nearized by expansion in a Taylor series, 
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Results and discussion 
The parameters of coordinate transformation have the form: 
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 ,   are  refinement  factors  (  >1 and 
>1),  L  - is the length of the  computational do-
main in the generalized coordinates,  and cz - is the 
point with  respect  to which  grid  refinement  is 
performed.  

Previously the shear layer problem for mona-
tomic (air) gas has been tested by the following 
parameters:  

KTM 07.285,51.0 00  , PaP 91.560880  , 

KTM 58.176,8.1 ∞∞  , PaP 65.54648∞  . 
The computational grid is 526x201. The chan-

nel height and length were 8 cm and 50 cm, re-
spectively. The splitter plate thickness is 0.3175 

cm, and at the trailing edge is 0.05 cm. The initial 

momentum thickness  


 








 dzuu ** 1


 is 

0.05 cm. The geometrical parameters above are 
taken from experimental work of Samimy and El-
liot [8-9]. Experiment was conducted in tunnel, 
present calculation performed for planar channel to 
estimate the behavior of turbulence quantities. Fig-
ures 2-4 shows ( 510=c .M ) the comparison of the 
calculated distributions of longitudinal (axial) 
mean velocity, variation of the momentum ( ) and 
vorticity ( w ) thicknesses, and turbulence quanti-
ties with the experimental data [8-9]. The non-
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dimensional variables  
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fined as in the experiments [8-9]. Figure 2 indi-
cates that the shear layer growth in terms of mo-
mentum and vorticity thickness is predicted rea-
sonably accurate by the present algorithm, as com-
pared to experimental data. 

 
     
 

 
 

Figure 2 – Comparison of present calculation with experimental data  
by the growth of momentum and vorticity thickness. 

 
  

The comparison of calculated transverse distri-
bution of the normalized streamwise mean velocity 
at five longitudinal positions with experimental 
measurements as shown in Figure 3 suggest that in 
the fully developed region for x≥12 cm the mean 
flow is self-similar.  

Further comparison of the calculated results 
with experimental data are shown for the develop-
ment of the Reynolds stress  2∞ -/ ouuvu   in 
Figures 4 and streamwise turbulence intensity 

  ouuk -/3/2 ∞  in Figure 5. The contribution of 
transverse velocity fluctuating component to turbu-
lent kinetic energy was neglected. It is visible from 
figures that the calculated turbulence quantities are 
distorted at x≥15 cm, which shows that the turbu-
lence similarity is achieved further downstream 
than the mean flow similarity. The preliminary test 
shown that the mean and turbulence quantities are 
in a good agreement with experimental data. 
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Conclusion 
 
The flowfield structures of supersonic turbu-

lent planar shear layer computed by calculation of 
the system of two-dimensional planar Favre-
averaged Navier-Stokes equations. The k-ε two-
equation turbulence model with compressibility 
correction is used to determine the eddy viscosity 
coefficient. The numerical method is based on the 
third order ENO finite-difference scheme. The 
comparison of present results obtained by using 
ENO scheme and k-ε turbulence model with expe-
rimental data demonstrates a satisfactory predic-
tion of mean and turbulence properties of the flow.  

Thus the constructed algorithm based on the 
high order scheme and computer code for turbulent 
supersonic flow allows to study influence parame-
ters that control mixing, which is important in the 
design of supersonic combustion ramjet (scramjet) 
engines and easily expanded into 3D case.  
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