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Non-rotating and slowly rotating stars in classical physics 

Abstract. Equations are given for the calculation of the equilibrium configurations of slowly rotating stars in the 
framework of classical physics. In particular, prescriptions have been given to find the mass-radius, the mass-central 
density relations and the shapes of rotating stars. The equations which determine the relations between mass, central 
density and radius of rotating configurations take the form of an equation of hydrostatic equilibrium. These equations 
show the balance between the pressure, gravitational, and centrifugal forces correctly to second order in the angular 
velocity, but no other approximation is made. The equations which determine the moment of inertia and the quadru-
pole moment of the rotating star have also been derived. 
Keywords: Hartle’s formalism, equilibrium configurations, moment of inertia and quadrupole moment. 

Introduction 

In physics rotation may introduce a lot of 
changes in any system. For celestial object such as 
stars and planets their rotation plays a crucial role. 
Rotation does not only change the shape of the ce-
lestial objects but also influences the processes 
occurring inside stars i.e. it may accelerate or dece-
lerate thermonuclear reactions in certain conditions, 
it changes the gravitational field outside the objects 
and it is one of the main factors that defines the 
lifespan of all stars (giant stars, main sequence, 
white dwarfs, neutron stars etc.) [1-3]. 

For instance, let us consider a white dwarf. A 
non-rotating white dwarf has a limiting mass 
�����⊙which iswell-known as the Chandrasekhar 
limit [4]. The central density and pressure corres-
ponding to this limit define future evolution of 
white dwarfs. If the white dwarf rotates, then due 
to the centrifugal forces the central density and 
pressure decrease [5]. In order to recover the initial 
values of the central density and pressure of a ro-
tating star one needs to add extra mass. Here we 
see that a rotating star with the same central densi-
ty and pressure as those of the non-rotating one 
possesses larger mass [6]. 

In this work we derive the equations describing 
the equilibrium configurations of slowly rotating 

stars within Hartle’s formalism [7]. It is convenient 
to consider stars and planets as liquid when solving 
the problems of celestial mechanics, astronomy 
and astrophysics. The derived equations are valid 
with the precision to second order terms in the an-
gular velocity for any liquid. 

As a result we obtain the equations defining the 
main parameters of the rotating equilibrium confi-
gurations such as the mass, radius, moment of iner-
tia, gravitational potential, angular momentum and 
quadrupole moment as a function of the central 
density and angular velocity (rotation period). In 
turn these parameters are of great importance in 
defining the further development - evolution of a 
star. 

To pursue all these issues in more detail it is 
therefore of interest to determine what are the equi-
librium configurations of a rotating star in classical 
physics. This is a problem, while presenting no 
difficulties of principle, is numerically complicated. 
Instead of one radial dimension, one has two or 
three dimensions. Instead of two ordinary differen-
tial equations to solve, one has the equivalent of an 
infinite system of ordinary differential equations-
one for each coefficient of an expansion of all re-
levant quantities in spherical harmonics. 

If, however, the star is rotating slowly, the cal-
culation of its equilibrium properties is much simp-
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ler, because then the rotation can be considered as 
a small perturbation on an already-known non-
rotating configuration. We therefore consider in 
this paper according to the Hartle formalism [7] the 
following problem: 

 A one-parameter equation of state is speci-
fied: (pressure) = (known function of the density) 
� � ���� , where ��� is the pressure and �  is the 
density of matter. In general situations the pressure 
is also a function of temperature. This restricted 
form of the equation of state is appropriate when 
the temperature is a known function of the density 
inside the star. For example, this is the case when 
(1) all the matter is cold at the end point of ther-
monuclear evolution (see Harrison et al. 1965 [11]) 
or (2) when the star is in convective equilibrium so 
that changes in state are adiabatic (see, Chandra-
sekhar 1939 [10]). 

 A non-rotating equilibrium configuration is 
calculated using this equation of state and the clas-
sical equation of hydrostatic equilibrium for spher-
ical symmetry. The distribution of pressure, energy 
density, and gravitational field are thereby known. 

 Axial and reflection symmetry. Attention is 
limited here to configurations which are axially 
symmetric. The configuration is symmetric about a 
plane perpendicular to the axis of rotation. From 
one’s experience with the Newtonian theory of 
figures of equilibrium it is plausible that both of 
these assumptions are really consequences of the 
slow rotation of the configuration and not restric-
tions at all. 

 This configuration is given a uniform angu-
lar velocity sufficiently slow so that the changes in 
pressure, energy density, and gravitational field are 
small. The configurations which minimize the total 
mass-energy (e.g., all stable configurations) must 
rotate uniformly (see Hartle and Sharp 1967 [12]). 

 Slow rotation. From simple dimensional 
consideration this requirement implies 

 

Ω� ≪ ����
� ��
���,  (1)  

 
where Ω is the angular velocity of the star, � is the 
mass of the unperturbed configuration, � is its ra-
dius, � is the gravitational constant, � is the speed 
of light. For the unperturbed configuration the fac-
tor ������ is less than unity [8, 9]. Consequently 
the condition in equation (1) also implies 

 
�Ω ≪ �,           (2) 

 

 In other words, every particle must move at 
non-relativistic velocities if the perturbation of the 
geometry is to be small in terms of percentage. 

 These small changes are considered as per-
turbations on the known non-rotating solution. The 
field equations are expanded in powers of the an-
gular velocity and the perturbations calculated by 
retaining only the first-and second-order terms. 

In this paper the equations necessary to solve 
this problem are obtained. Their numerical solution 
for particular equation of state and the analysis of 
the stability of the resulting configurations will be 
discussed in the forthcoming papers. 

 
Slowly rotating stars in Newtonian gravita-

tional theory 
 
The theory of the equilibrium configurations of 

slowly rotating self-gravitating bodies has long 
been known in Newtonian gravitational theory (see, 
e.g., Jeffreys 1959 [13]; Chandrasekhar and Ro-
berts 1963 [5]). In Newtonian gravitational theory 
the equilibrium values of pressure �, density � and 
gravitational potential Φ of a fluid mass rotating 
with a uniform angular velocity Ω are determined 
by the solution of the three equations of Newtonian 
hydrostatic equilibrium. These are (1) the Newto-
nian field equation: 

 
��Φ��, �� � ������, ��,            (3) 

 
(2) the equation of state which we have as-

sumed to have a one-parameter form 
 

� � ����,             (4) 
 

(3) the equation of hydrostatic equilibrium 
which can be summarized in the case of uniform 
rotation and a one-parameter equation of state by 
its first integral 

 

� ����, ��
���, �� �

1
2Ω

���
�

�
sin�� 

 
�Φ��, �� � ������                    (5) 

 
The problem posed in the introduction to find 

the properties of a configuration of given central 
density and angular velocity can be phrased as fol-
lows. A solution  Φ���,  ����, and  ���� of the New-
tonian equations in the absence of rotation is 
known. This solution is the leading term in an ex-
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pansion of the solution including rotation in pow-
ers of the angular velocity Ω. It is clear from the 
symmetry of the configuration under reversal of 
the direction of rotation that only even powers of 
the angular velocity will appear in this expansion. 
The equation of Newtonian hydrostatics are now 
expanded in powers of  Ω� , and the equations 
which govern the second-order terms in the solu-
tion determined. 

 
Coordinate transformations 
 
Care must be exercised in choosing the coordi-

nate system in which these expansions are carried 
out. For example, an expansion of the density as a 

function of the ordinary polar coordinates �, �  is 
not valid throughout the star. Such an expansion 
could be valid only if the fractional changes in 
density at each point in space were small. This 
condition cannot be met near the surface of the star 
as the surface of the configuration will be dis-
placed from its non-rotating position and the per-
turbation in the density may be finite where the 
unperturbed density vanishes. To avoid this diffi-
culty the points of space in the rotating configura-
tion will not be labeled by the usual coordinates � 
and �. Instead two coordinates � and Θ defined as 
follows will be used: Consider a point inside the 
rotating configuration. This point 

 

 
Figure 1 – Definition of the coordinates �, Θ, and the displacement��.  

The surface (a) is the surface of constant density ���� in the non-rotating configuration.  
The surface (b) is the surface of constant density ���� in the rotating configuration. 

 
 

lies on a certain surface of constant density. Ask 
for the radius of the surface in the non-rotating 
configuration which has precisely the same con-
stant density. This radius is defined to be the coor-
dinate �. The coordinate Θ is defined to be identic-
al with the usual polar angle �. These definitions 
are given pictorially in Figure 1 and mathematical-
ly by the following equations: 

 
 
Θ � �, �����, Θ�, Θ� � ���� � �������.    (6) 

 

The function ���, Θ� then replaces the density 
as a function to be calculated in the rotating confi-
guration. The expansion of the ���, Θ� in powers 
of the angular velocity will be written 

 
� � � � � � ��Ω��                      (7) 

 
The quantity � � ���, Θ��Ω� is the difference 

in radial coordinate �, between a point located by 
polar angle Θ  on the surface of constant density 
����  in the rotating configuration and the point 
located by the same polar angle on the surface of 
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the same constant density on the non-rotating con-
figuration (see Figure 1). For small angular veloci-
ties, the fractional displacement of the surface of 
constant density due to the rotation is small at the 
surface and in the middle of the star, 

 
���, Θ��� � 1.  (8) 

 
It will also be small at the center of the star if 

the rotating configuration is chosen to have the 
same central density as the non-rotating configura-
tion so that � vanishes at  � � �. We are always 
free to consider the rotating configuration as a per-
turbation on a non-rotating configuration of the 
same central density; so that equation (8) can be 

satisfied throughout the star. In the �, Θ coordinate 
system the two functions which characterize the 
rotating star are ���, Θ� and the gravitational 
potentialΦ��, Θ� . The density and pressure are 
known functions of �  related by the equation of 
state 

 
�����, Θ�, Θ� � ���� � �������,	 

	�����, Θ�, Θ� � ���� � �������.          (9)  
 
Expansion in spherical harmonics 
 
The expansion of  �	 to terms in  Ω� is given by 

equation (7) and the expansion of Φ is denoted by 
 

Φ��, Θ� � Φ������ � Φ�����, Θ� � ��Ω��, 
	

Φ��, �� � Φ�� � �, Θ� � Φ��, Θ� � � ����,���� � ��Ω��   (10)	
	

� Φ������ � � �Φ
������
�� � Φ�����, Θ� � ��Ω��. 

 
These expansions are to be inserted in equa-

tions (3) and (5) written in the coordinates �, Θ 
with only terms of order  Ω� retained. The calcula-
tion of  �  and Φ��� from the resulting equations is 
greatly simplified if these functions are first ex-
panded in spherical harmonics since only a few 
terms in this series will remain in the final result. 
The reflection symmetry of the configuration im-
plies that only spherical harmonics of even order 
will appear in this expansion if the polar axis is 
taken to be the axis of rotation. 

 

���, Θ� ���������
�

���
�cosΘ�,		 

 

Φ�����, Θ� ��Φ�
��������

�

���
�cosΘ�, 

 
		���, Θ�, Φ�����, Θ�	~Ω�,  (11) 

 
where ���cosΘ� are the Legendre polynomials. 
These expansions are to be substituted into the 
three equations of Newtonian hydrostatic equili-
brium and the equations governing ����� and Φ�

��� 
derived. 

When the expansions contained in equations 
(7), (10), and (11) are substituted into the integral 

of the equation of hydrostatic equilibrium (5), only 
those equations corresponding to the � values 0 and 
2 are found to contain the angular velocity, Ω, in 
any way. This is because the centrifugal potential 
term in equation (5) has the angular dependence on 
sin�Θ . The Newtonian field equation when ex-
panded in this way couples together only quantities 
with the same value of  �. The equations for �����, 
Φ�
������, with � � � are thus independent of  Ω and 

their solution is 
 

�� � �, Φ�
��� � �, � � �.          (12) 

 
There remain only the quantities with � � � 

and � � 2 to be determined. This reduction in the 
number of  �	values from infinity to 2 is the central 
simplification of the slow rotation approximation. 
In place of a system of partial differential equa-
tions one now only has ordinary differential equa-
tions for the four unknown functions Φ�

���	���,
Φ�
������, ����� and  �����. 

Now let us perform above-mentioned computa-
tions in detail. First we write down the Newtonian 
equation of hydrostatic equilibrium: 

 

� ����, ��
���, �� �

1
2Ω

���
�

�
sin�� � Φ��, �� � �����, 
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then the definition of the Legendre polynomials: 
 
���cosΘ� � 1, ���cosΘ� � �

� �3 cos� Θ � 1�.	(13) 
 

Now we will express sin�Θ  in terms of 
���cosΘ� and ���cos Θ� 

 

sin�Θ � �
� ����cos Θ� � ���cos Θ��,       (14)  

 
From here we see that � accepts only two val-

ues 0 and 2. Rewriting the Newtonian equation of 
hydrostatic equilibrium in coordinates �, Θ	 and 
expanding it in spherical harmonics we obtain 

 
 

� ��������
���� � �

�Ω���
�
� ����cos Θ� � ���cosΘ�� � Φ������   (15)	

��Φ�
������

�

���
���cos Θ� �������

�

���
���cos Θ� �Φ

������
�� � �����	

 
Here we collect the equations ~Ω�, and Ω� with  � � �, 2 terms. The terms~Ω�are given by 
 

� ��������
����

�
� � Φ������ � ��������,                                               (16) 

 
which corresponds to the Newtonian hydrostatic equation of a static configuration. Eventually terms ~Ω� 
with � � �, � will be given by 

 

��
�Ω��� � Φ�

������ � ����� ��
������
�� � �,    (17) 

 
�
� Ω��� � Φ�

������ � ����� ��
������
�� � �.                                     (18) 

 
Using the same procedure the Newtonian field equation becomes 
 

��Φ��, �� � �
��

�
�� ���

����,��
�� � � �

�� ��� �
�
�� �sin �

����,��
�� �   (19)	

� ���Φ��, �� � 1
�� ��

�Φ��, �� � ���Φ������ � ���Φ�
������	

����Φ�
���������cos �� � 1

�� ��
�Φ�

���������cos �� � ������, ��. 
 

Knowing that functions Φ�
���  and Φ�

���  are al-
ready proportional to Ω�  we can directly write 
them in ��, Θ�  coordinates. However the term 

���Φ������ � ���Φ������ � ���, Θ� �
�� ���Φ������  

is defined this way, details are given in Appendix. 
Thus 

 
��Φ��, �� � ���Φ������ � ���, Θ� �

�� ���Φ������    (20)	
����Φ�

������ � ���Φ�
���������cos Θ� � 1

�� ��
�Φ�

���������cosΘ� � �������.	
	

Taking into account that ���, Θ� � ����� ���������cos Θ�, and collecting the corresponding 
terms we obtain the following Newtonian field eq-
uations of both static and rotating configurations 

 
���Φ������ � �������,        (21) 

 
����� �

�� ���Φ������ � ���Φ�
������ � �,						(22) 

 

����� ��� ��
�Φ������ � ���Φ�

������ � 

�	 ��� Φ�
������ � �.            (23) 
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Two problems of major interest are to deter-

mine (1) the relation between mass and central 
density for a rotating star, and (2) the shape of the 
star. The differential equations for Φ�

������,
Φ�
������, ����� and  �����, which will completely 

determine the equilibrium configuration, will now 
be given in forms suitable for solving these prob-
lems. 

 
Relation between mass and central density 
 
The relation between mass and central density 

may be determined from the � � � equations alone.  

The mass can be found from the term in Φ which 
is proportional to � �⁄  at large distances. All com-
ponents except � � �  vanish more strongly than 
this. Similarly near the origin all components of 
the density except � � �vanish, so only the � � � 
component contributes to the central density. 

The total mass of the rotating configuration is 
given by the integral of the density over the vo-
lume. Writing this out in the �, � coordinates, ex-
panding to order   Ω�, and performing an integra-
tion by parts, one finds the change in mass ���� of 
the rotating configuration from the non-rotating 
one. Thus the total mass is given by 

 
 

���� � � ���, ���� �� � ���, ����� �� ��� � ����                                  (24) 
	

� ����� � �� � ������ � ��� � �� �� � ��
� � �� �

��
����� � �� � ��

� � ��
����

����	
	

� � ������� �� �������� � � ������� �����,��� � ����,��
�� � �� ��������. 

 
 

Performing the integration in the range of an-
gles � � � � � and � � � � �� we obtain 

 
������� � ������� � �������,	         (25) 

 
������� � �� � �������

� ��,	           (26) 
 

������� � �� � �������
� �������� � ������

�� � ��
   

� �� � ������� ������� � ���
� ��,         (27) 

 
taking into account the following integrals 
 

� �������
� � �,																									(28) 

 
� ������ ���������
� � ��         (29) 

 
It is easy to show from the field equations and 

definitions of the masses 
 
���Φ������ � ��Φ������ � �������,							(30) 

 
 
 

�
�� ��

�Φ������ � �
�� �

�Φ������ � 

� 	��� �����
�� ,                   (31) 

 
��������

�� � ��������,																	(32) 
 

��������
�� � �� ������� ������� � ��,									(33) 

 
using the condition that Φ������, 	Φ�

������ →
��������,  as  � → �, taking into account (22) the 
masses of both configurations can be expressed as 

 
��������

�� � ��������
�� ,                 (34) 

 
��������

�� � ���
������
�� ,                 (35) 

 
It is convenient to display the � � � equation in 

a form in which it resembles the equation of hy-
drostatic equilibrium. To do this we make the defi-
nition 
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��∗��� � ����� ��
������
�� ,																					(36) 

 
and taking derivative from (17) we obtain 

 

����∗���
�� � �

�Ω�� � ��������
�� ,													(37) 

 
this equation along with 

 
��������

�� � �������� ������� ��∗���,          (38) 
 

show the balance between the pressure, centrifugal, 
and gravitational forces per unit mass in the rotat-
ing star. The latter expression is written in terms of 
(16). To calculate the relation between mass and 
central density for the rotating star one now 
proceeds as follows: (1) Pick a value of the central 
density. Calculate the non-rotating configuration-
with this central density. (2) Integrate equations 
(37) and (38) outward from the origin starting with 
the boundary condition which guarantees that the 
central density of the rotating configuration will 
have the same value. 

 
��∗ → �

�Ω���, � → �.																	(39) 
 

(3) The value of ������� at the radius of the 
unperturbed star gives the change in mass of the 
rotating star over its non-rotating value for the 
same central density. 

 
The shape of the star and numerical integra-

tion 
 
The calculation of the shape of the rotating star 

involves the l� 2 equations as well as those with 
� � �. If the surface of the non-rotating star has 
radius � then equations (7) and (11) show that the 
equation for the surface of the rotating star has the 
form 

 
���, Θ� � � � ����� � ��������Θ�.       (40) 

 
The value of  ����� is already determined in 

the � � � calculation 
 

����� � ��
�� ��∗���,                 (41) 

 
Where 	� � �������  is the mass of the non-

rotating configuration. However the determination 

of �����  from � � 2  equations is not straightfor-
ward. So far, we have � � 2 equations (18) and (23) 
representing hydrostatic equilibrium and field equ-
ations, respectively. Defining ����� from (18) and 
inserting it into (23) we have 

 
����� � � ��

����� �
�
�Ω��� � Φ�

�������,							(42) 
 

���Φ�
������ � �

�� Φ�
������ � ����

���� �
�
�Ω��� �

�	Φ�
������� ������� ,          (43) 

 
where ���� � ������� is the non-rotating mass 
for the sake of brevity. In order to solve the latter 
equation numerically one needs to rewrite it as 
first-order linear differential equations. Introducing 
new functions � � Φ�

���  and �  equation (43) can 
be reduced to 

 
�����
�� � � ������

�� ���� � ��
� Ω��������,					(44) 

 
�����
�� � ����

�����
���� � 2

������ �
2����
����� � 

		�	 ��
����� ����Ω���.                (45) 

 
The equations are solved for the derivatives so 

that they are in a form where their solution can be 
computed numerically by integrating outward from 
the origin. At the origin the solution must be regu-
lar. An examination of the equations shows that, 
as		� → �, 

 
���� → ���, ���� → ���,															(46) 

 
where � and � are any constants related by 

 
� � ��

� ���� �
��
� ���Ω�,               (47) 

 
and where ��	is the value of the density at the cen-
ter of the star. The remaining constant in the solu-
tion is determined by the boundary condition that 
���� → �  at large values of � . The constant is 
thus determined by joining the interior solution to 
that exterior solution which satisfies this boundary 
condition. 

In the exterior region �� � �� the solutions of 
the equations (44) and (45) are 

 
������ � ��

�� ,				������ �
�������
��� .          (48) 
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The interior solution to the equations (44) and 

(45) may be written as the sum of a particular solu-
tion and a homogeneous solution. The particular 
solution may be obtained by integrating the equa-
tions outward from the center with any values of � 
and � which satisfy (47). The homogeneous solu-
tion is then obtained by integrating the equations 

 
������
�� � � ������

�� �����,            (49) 
 

������
�� � ������������� � �

������� �
������
����� ,				(50) 

 
with 	� and � related now by 

 
� � ��

� ���� � �               (51) 
 

The general internal solution �� � ��  may 
then be written 

 
������ � ����� � �������,				 
	������ � ����� � �������.													(52) 

 
By matching (48) and (52) at �� � �� the con-

stants	��and ��	are defined. Thus ������ is deter-
mined, hence �����	can be easily calculated from 

 
����� � � ��

����� �
�
�Ω��� � Φ�����

��� ����.					(53) 
 
The ellipticity of the star 
 The quantity defined by 
 

���� � � �
�� �����,                  (54) 

 
is the ellipticity of the surface of constant density 
labeled by	� [15]. Using this expression and (42), 
then eliminating	Φ�

��� in (43) one has the following 
equation for	����: 

 
����
�

������
��� � 2

�
�����
��

�����
�� � 

 

�	��������
����
�� � ���������

�� � �,    (55) 
 

or in a compact form it is written as follows 

 
�
��

�
��

�
�� ������������ � ������ ������� .						(56) 

 
This equation is equivalent to Clairaut’s equa-

tion [15]. Here both ����  and ����   are known 
functions of  �. The ellipticity must be regular at 
small  �, and equation (56) shows that it approaches 
a constant at  � � �. With this boundary condition 
equation (56) may be integrated to find the shape 
of		���� but not its magnitude. To find the magni-
tude of 	����	one needs to use (53). The procedure 
for the boundary condition at the surface in the pre-
vious section, together with the condition of regular-
ity at the origin and the differential equation (56) 
uniquely determine the ellipticity of the surfaces of 
constant density as a function of the coordinate   �. 

 
Quadrupole moment 
 
The Newtonian potential Φ��, Θ�  outside the 

star �� � �� will be written as before (see (10)) 
 

Φ��, Θ� � Φ������ � Φ�
������ � 

�Φ�
���������cos Θ�,      (57) 

where 
Φ������ � ������

� ,                  (58) 
 

Φ�
������ � ������

� ,                (59) 
 

Φ�
������ � ��

��.																											(60) 
 

In view of (25), the equation (57) is written as 
follows 

 
Φ��, Θ� � ������

� � ��
�� ���cosΘ�,        (61) 

 
Thus constant �� can be written as   �� � ��, 

where � is the mass quadrupole moment of the star. 
According to Hartle’s definition � � � defines an 
oblate object, � � � defines a prolate object. 

 
Moment of inertia 
 
Similarly to the total mass of the star the total 

moment of inertia can be calculated 

 
���� � � ���, ���� s�� ������ � � ���, ������s��������� 	                                  (62) 
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� ��
��� � �� � ������ � ��� � �� �1 � ��

� � �1 �
��
��� ��

� �1 � ��
� � ��

�������
�   (63) 

 

� � ��������sin�Θ�Θ��
�

� � ������ �4���, Θ�� � ����, Θ�
�� ���sin�Θ�Θ��

�
 

 
 
 
Performing integration in the range of angles 

0 � Θ � � and 0 � � � �� we obtain  
 

������� � ������� � �������,																(64) 
 

������� � ��
3 � ��������,

�

�
 

������� � ��
3 � ������ ������ � 1

5
���
��

�

�
� 4
� ��� �

1
5 ���� ��

� ��
3 � ��15 �����

�

�
� ������ ������

� ��, 
 

taking  into account the following integrals 
 

� sin�Θ�Θ � �
�

�
� ,                 (65) 

 
� ���cosΘ�sin�Θ�Θ � � �

��
�
� .              (66) 

 
The definition of the moment of inertia for 

slowly rotating relativistic stars can be found in 
[14]. 

 
Summary: static case 
 
To determine the relation between mass and 

central density one now proceeds as follows. (1) 
Assign the equation of state � � ���� (polytrope, 
tabulated, etc.). (2) Choose the value of the central 
density ��� � 0� � ��.  Calculate the mass and 
pressure from the Newtonian field equation and 
equation of hydrostatic equilibrium with the regu-
larity condition at the center ������ � 0� � 0. 

 

�
��������

�� � 4�������,
��������

�� � ����� ��������
�� ,

															(67) 

 
The gravitational potential of a non-rotating 

star is defined by 
 
��������

�� � ��������
�� � � �

����
��������

��           (68) 
 

On the surface the pressure must vanish 
������ � �� � 0. 

 
Summary: � � 0 equations 
 
Choose the value of the angular velocity of the 

star. For instance, as a test value take 
 

Ω � ���������
��                (69) 

 
Integrate the couplet equations 
 

�
���∗���
�� � �

�Ω�� �
��������

��
��������

�� � 4������� ������� ��∗���,
,								(70) 

 
out from the origin with boundary conditions that 
as � → 0 

 
��∗��� → �

�Ω���, ������� → 0.    (71) 
 

These boundary conditions guarantee that the 
central density of the rotating and non-rotating 
configurations are the same. 

 
Summary: � � � equations 
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A. Particular Solution 
Integrate equations 
 

�
�����
�� � � ������

�� ���� � ��
� Ω��������

�����
�� � ������������� � �

������ �
�����
����� �

��
����� �Ω���

                          (72) 

 
 
outward  from the center with arbitrary initial con-
ditions satisfying equations 

 
���� � ���,					���� � ���,					 
� � ��

� ���� �
��
� ���Ω�,  (73) 

 
where  �  and �  are arbitrary constants. Set, for 
example,  � � � and define � from the above al-
gebraic equation. This determines particular solu-
tions  �����	and  �����. 

 
B. Homogeneous Solution 
 
Integrate the homogeneous equations 
 

�
������
�� � � ������

�� �����
������
�� � ������������� � �

������� �
������
�����

					(74) 

 
outward from the center with arbitrary initial con-
ditions satisfying the equations  

 
����� � ���,				����� � ���,				 
	� � ��

� ���� � �   (75) 
 

Set � � � and �  is given by the above equa-
tion. This determines particular solutions 
�����	and  ����� . Thus interior solution is de-
fined by the sum of the particular and the homoge-
neous solution 

 
������ � ����� � �������,						 

 
������ � ����� � �������. (76) 

 
C. Matching with the Exterior Solutions 
 
The exterior solutions 
 

������ � ��
�� ,					������ �

�������
��� .      (77) 

 

By matching (77) and (76) at �� � �� 
 

����� � �� � ����� � ��,					 
����� � �� � ����� � ��.  (78) 

 
constants ��  and  ��  are defined. The surface of 
the rotating configuration, polar ��  and equatorial 
�� radii are given by 

 
���, Θ� � � � ����� � ��������Θ�,         (79) 

 
�� � ���, �� � � � ����� � �����,						(80) 

 
�� � ���, � �⁄ � � � � ����� � ����� �⁄ 				(81) 

 
Conclusion 
 
Equations have been developed for calculating 

the structure of slowly rotating classical stars in 
hydrostatic equilibrium. In particular, prescriptions 
have been given to find the relation between mass 
and central density, the shapes of rotating stars. 

The equation which determines the relation be-
tween mass and central density takes the form of 
an equation of hydrostatic equilibrium. It enforces 
the balance of pressure, gravitational, and centri-
fugal forces correctly to order Ω� in the angular 
velocity. In this order the surface of constant densi-
ty are spheroids whose ellipticity varies from zero 
at the center of the star to the ellipticity which de-
scribes the shape of the star at the surface. The el-
lipticity, ���� , as a function of radius is deter-
mined by Clairaut’s differential equation for this 
quantity. 

Both the equations which determine the rela-
tion between mass and central density and those 
which determine the ellipticity are systems of ordi-
nary, first-order linear differential equations whose 
solution may be obtained by numerical integration. 

The equations which determine the moment of 
inertia and the quadrupole moment of the rotating 
star have also been defined. The product of the 
moment of inertia and the angular velocity defines 
the angular momentum of the star. 
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All these quantities are very crucial in describ-
ing the equilibrium configurations of uniformly 
rotating stars and planets. 
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Appendix 
 
In the paper we used frequently the Taylor se-

ries of function ���� � ��� 
 

 
���� � ��� � ����� � �������� � �����

�� ������� � �����
�� �������� � �       (82) 

 
 
where �� � � � ��.	 Moreover  we had the following algebraic manipulations 
 

� � � � �,                                                                                (83) 
 

�
� �

�
��� �

�
� �� �

�
��,																																																																											(84) 
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��� ��,																																																																			(85) 
 

��
�� � �� � ��

���,                                                                (86) 
 

��
�� � �� � �

��.																																																																																			(87) 
  
The Newtonian field equations for Φ������ in �, � coordinates will have the form 
 

���Φ������ � ���Φ������ � ���, �� �
�� ���Φ������																                          (88) 

 
Now let us see technical details  
 

���Φ������ � � ����� �
�
�
�
���Φ������ � �����

�
��

��
��

�
�� �

�
���
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��

�
���Φ����� � ��              (89) 
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