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The loss function of dense plasmas and sum rules 

Abstract. Mathematical, particularly, asymptotic properties of the RPA and RPA with dynamic local field 
corrections of the coupled plasma dielectric function are analyzed within the method of moments which satisfies 
some exact relations. Particularly f-sum rule,higher-order sum rules and other conservation laws. Thehigher-order 
sum rules take into account the correlations in the system under scrutiny, so if the system dynamic characteristics, 
e.g., the dielectric function, do not satisfy these rules which are effectively additional conservation laws, it is difficult
to expect the corresponding model to be adequate in the strong-coupling domain.Some other drawbacks and 
advantages of the above models are pointed out.  
Keywords: coupled plasmas, dielectric function, loss function, sum rules, method of moments. 

Introduction 

The extension of numerous models for the 
description of the coupled or non-ideal plasma 
dynamic properties onto the density-temperature 
domain characteristic for the inertial fusion bound 
experiments [1] is a hot problem nowadays. 
Particularly, the diagnostics methods applied in 
these experimental studies require a reliable 
method of reconstruction of the dynamic structure 
factor, and the method of moments [2-8] has 
demonstrated its advantages here with respect to 
other approaches recently [9].  

We believe the sum rules can help us to answer 
these questions and determine the level of accuracy 
of dynamic theories of non-perturbative systems 
[10]. Certainly, the f -sum rule related to the 
density conservation is a pillar of any such model, 
but there are other pillars. These are other 
conservation laws and higher-order sum rules. The 
latter take into account the correlations in the 
system under scrutiny, and if the system dynamic 
characteristics, e.g., the dielectric function, do not 
satisfy these rules which are effectively additional 
conservation laws, it is difficult to expect the 
corresponding model to be adequate in the strong-
coupling domain. The advantage of the approach 

based on the theory of moments is that the 
constructed (inverse) dielectric function satisfies 
all sum rules taken into account automatically. The 
disadvantage is related to the necessity to model a 
phenomenologically unknown and not measurable 
parameter function with certain mathematical 
properties, the Nevanlinna parameter function 
(NPF). The latter can be either reconstructed from 
available dynamic data, like it was done in [9] by 
the local constraints method, see [8] and references 
therein, or modelled on the basis of additional 
exact properties and/or limiting properties, like it 
was suggested in [11]. The point or the hope is that 
the main physical properties of the dynamic 
characteristic reconstructed on the basis of sum 
rules depend on the NPF model weakly. 

As we will show, in one-component plasmas 
the RPA with an adequate dynamic local-field 
correction does comply with the higher-order sum 
rule.  

The loss function 

Modelling of the dielectric function,  ,k 
(DF), or the inverse dielectric function,  1 ,k 

(IDF), of strongly coupled Coulomb systems is 
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actively discussed in the literature, in particular, 
because the corresponding loss function  

 
   1, = , / 0,k Im k            (2.1) 

 
which is an even function of the real frequency,  
 , determines the polarizational stopping power 
of such systems [13]. The non-negativity of the 
loss function stems from the similar property of 

  1 ,Im k   for positive frequencies which in 
turn follows from the fluctuation-dissipation 
theorem since the (charge-charge) dynamic 
structure factor (DSF),  ,ccS k  , is non-negative 
by definition:  

 
       , = , .cck k b S k       (2.2) 

 
Here 1 = Bk T   is the system temperature in 

energy units, Bk  and   are the Boltzmann and 
Planck constants,   2 2= 4 /k e k  ; the function 

    = 1 exp /b x x x   is obviously strictly 
positive. We presume the system we consider to be 
in thermal equilibrium, uniform, and 
unmagnetized. 

The analyticity of the prolongation of the IDF 
onto the upper half-plane of the complex frequency 

=w i  , > 0 , is due to the causality 
principle and the Kramers-Kronig relations are 
always valid for this function:  

 

   1
1 ,

, =1 , > 0.
Im k dk w Imw

w
  
 









    
(2.3) 

 
Additionally,  
 

     1 1 1

0
,0 = , =1 ,lim

dk k i P Im k


    



  




  (2.4) 

 
where P implies the principal value of the integral. 

Consider the sum rules for the IDF which are 
effectively the (non-negative) power moments of 
the loss function [4-8]: 

 

   1= , , = 0,1,2, .l
lC k k d l  






 

 
(2.5) 

 
The odd order moments vanish due to the 

symmetry of the loss function. 

The expression for the zero moment follows 
immediately from (2.4) since the loss function can 
be considered continuous at = 0 : 

 

     
1

1
0

,1= =1 ,0 > 0.
Im k

C k d k
 

 
 






  (2.6) 

 
 The inequalities of the form  
 
     1 , 0 1 ,0 1, ,0 < 0k k k        (2.7) 

 
also follow directly from (2.4), see [14,15] and 
references therein; the values of  , 0k  between 
0  and 1 turn out to be forbidden and the causality 
conditions corresponding to the action of the 
external charge on the system do not preclude 
negative values for a static dielectric function (DF) 
of the system. If the static DF,  , 0k , becomes 
negative then the analyticity of the DF in the half-
plane > 0Im  might brake down. 

We are interested here in taking into account 
not only the sum rules, but other exact relations as 
well. We wish to consider multi-species systems 
and the method of moments does not involve 
essentially the local-field corrections and expresses 
the dynamic properties in terms of the system static 
characteristics like the static structure factors and 
the moments themselves. Therefore we are not 
explicitly bounded, e.g., by the Niklasson 
condition or the compressibility sum rule [16,17] 
though the latter is important for the correct 
solution of the Ornsten-Zernicke equation, e.g. in 
the hypernetted approximation we use to compute 
the system partial static structure factors. The exact 
relation which directly influences our expression 
for the TCP IDF is, along the Kramers-Kronig 
relations, the Perel'-Eliashberg exact asymptotic 
form [18] (particularly, in a hydrogen-like two-
component completely ionized plasma with the 
neutrality condition ne=Zni):  

 

    9/21

5/4 3/4

, / ,

= 3 2 .

p

s

Im k A

A Zr

    



  

   

(2.8) 

 
The Brueckner parameter = /s Br a a  is 

determined by the electronic Wigner-Seitz radius  
 1/3= 3 / 4 ea n , 2 2= /B ea m e  is the Bohr 

radius, 2= 4 /p e en e m   being the (electronic) 
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plasma frequency. At high frequencies the 
asymptotic forms of the DF and IDF differ only in 
the sign so that the loss function behaves at high 
frequencies as 11/2 . This implies that in a real 
system the sixth and higher even order power 
moments must diverge. The result (2.8) was 
rediscovered in [19](a), see also [19](b). 

Observe also that due to the f -sum rule,  
 

2
2 = .pC   

 
We will apply the method of moments to the 

set  
 

    0 2 4, 0 , , 0 , ,C k C C k         (2.9) 
 
and use the characteristic frequencies  
 

     
   

1
1 2 0

2 4

= / = / 1 ,0 ,

= / .

p

p

k C C k k

k C k

  

 



   

(2.10) 

 
Notice that due to the non-negativity of the loss 

function and the Cauchy-Schwarz inequality, the 
above set of moments (2.9) is positive-definite and 
thus the corresponding Hamburger moment 
problem of reconstruction of the loss function is 
solvable [2,3]. Since, due to (3), we can rewrite the 
IDF as  

 

     1 1 ,
, = ,0 ,

k dwk w k
w

 
 

 


 








   
(2.11) 

 
the Nevanlinna theorem and formula determine the 
non-canonical solutions of the Hamburger moment 
problem for the IDF as well. 

It is important also that the explicit exact forms 
of these convergent moments can be derived 
independently of a particular DF or IDF model of 
an equilibrium plasma.The latter limitation can be 
avoided [20](a) applying the matrix version of the 
method of moments [20](b) in the species space 
[20](c). 

The asymptotic expansion of the IDF along 
any ray in the upper half-plane Imw>0 can be 
easily constructed from (2.11):  
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(2.12) 

 
Similarly, if the dielectric function itself is a 

response function, i.e., if  , 0 > 1,k  
 

 
 2 2 22

2
2 4, 1 ,p pp k

k w
w w

  


      
 
(2.13) 

 
so that for  

 
   , = , / ,k Im k             (2.14) 

 
which is also presumed to be non-negative and 
even for any real frequency ,  
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(2.15) 

 
Indeed, if  
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(2.16) 

 
but the positivity of the 4th moment M4(k) does not 
follow from the Cauchy-Schwarz inequality in L2. 

Hence, the coefficients of the asymptotic 
expansion of a certain function along any ray in the 
upper half-plane coincide with the convergent 
power moments of the corresponding distribution 
density (the loss function in our case) only if we 
deal with a Nevanlinna function [2], i.e., with a 
response function. In general, there are no reasons 
for the loss function higher moments (for even  
l > 4) to diverge in one-component plasmas  
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(OCPs), particularly, in electron fluids, but we 
show that they do for some of the models we 
consider here. Due to the definition of an 
asymptotic expansion, such divergence does not 
mean that lower order sum rules are not satisfied; 
such an option was not considered in [21]. 

 
The zero moment in the RPA 
 
The relation of the loss function zero moment 

to the static value of the plasma IDF is applicable 
to systems with arbitrary number of components. 
Within the RPA the static dielectric function is 
defined as 

 

 RPA FD3 0

4 / 2( ,0) =1 ln .
/ 2B

k pk pf p dp
a k k p




 



  

(3.1) 

 
Here 
 

       1

FD = = exp 1FDf f p E p 


   p  

 
is the Fermi-Dirac distribution density with 
     2 2= = / 2E E p p mp  . The dimensionless 

chemical potential =   is defined by the 
normalization equation   3/2

1/2 = 2 / 3F D  with 
 

 

 

0

2 2 2

2/32 2
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= = / 2 = / 2

= 3 / 2 ,
F F F

x dxF
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

 
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 


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


      

(3.2) 

 
where   ,F  ,FE Fv , and Fk  are the  -th order 
Fermi integral, Fermi energy, velocity, and 
wavenumber, respectively. 

For the reference, we provide here an exact 
explicit expression for the 4 th  moment. In a 
coupled electron fluid (see [4,8] and references 
therein):  

 
   ocp 4

4 0= 1 ,pC k W k              
(3.3) 

 
and the correction of the fourth moment contains 
only two contributions:  
 

     0 = .W k V k U k           (3.4) 

The first contribution is produced by the 
kinetic term of the system Hamiltonian. In the 
classical case,  V k  coincides with the well-
known Vlasov contribution to the dispersion 
relation, 2 2( ) = 3 / .DV k k k  In a degenerate system 

 
2 2 2 4

2 2( ) = ,
2

e

p p

v k kV k
m 

   
 


        
(3.5) 

 
where the average of the square of the (electron) 
velocity is expressed as    2 3/2

3/2= 3 ( ) / .ev F m D   

The second contribution to the fourth moment 
stems from the interaction contribution to the 
system Hamiltonian:  
 

      2
2 0

1= 1 , ,
2

U k p S p f p k dp
n




 
(3.6) 

 
where we have introduced the angular factor, 
 

   22 22

2 3

5, = ln .
12 4 8

k pp p kf p k
k pk p k

 
 


  (3.7) 

 
To describe experimental and simulation data 

within the moment approach, one should specify 
the characteristic frequencies (2.10) and the 
Nevanlinna parameter function [4-8]. But to apply 
the Mermin approximation, one first has to study 
other construction elements of (3.1). 

 
The extended RPA 
 
The extended Mermin approximation was 

suggested in [22](b) and [23]. The extension 
consists in the introduction into the RPA dielectric 
function  RPA ,k w  of the dynamic local field 
correction (DLFC):  
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(4.1) 

 
General properties and, in particular, the 

asymptotic expansion of the DLFC were studied in  
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detail by Kugler [25]. At least, within the 
interpolation model for the DLFC approximation 
[24] employed in [23], the odd-order power 
moments of the DLFC diverge while the even-
order moments vanish: 
 

     

 

,1, = ,

, .
w

ImG k
G k w G k d

w
G k




 






 







 

(4.2) 

 
 
The latter characteristic, in electron fluids 

without theself-energy and effective mass 
corrections [21]. 

 
 

Results and conclusions 
 
We have presented in figures 1 and 2the RPA 

model and RPA model with DLFC of the 
unmagnetized one-component completely ionized 
plasma longitudinal dielectric function and compared 
them to the one generated by the method of moments 
which takes into account all known sum rules and 
other exact relations automatically, by construction. 

The authors acknowledge the financial support 
of the Science Committee of the Ministry of 
Education and Sciences of the Republic of 
Kazakhstan under Grants No. 1128/GF, 1129/GF 
and 1099/GF, and express gratitude for the 
financial support provided by the Ministry by a 
grant “The Best Teacher”. 

 

 
 

Figure 1 –  The loss function calculated for different models of an electron uid at Γ = 1,  
rs = 2.5256 and k =0.6 kF. 
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Figure 2 – As in Fig. 1 but for Γ = 0.1 and k = 0.11 kF. 
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