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A new transform for solving linear second-orders ODE
with variable coefficients

Abstract: In this paper, we present a novel symmetry-enhanced transform

L) a) = fme_‘”z f(x)dx =B(a),a>0

to evaluate Gaussian integrals commonly used in mathematical and physical domains, particularly in
quantum field theory. Additionally, we utilize this original transformation methodology to solve a wide
range of second-order linear ordinary differential equations (ODEs) that have variable coefficients, which
is a common occurrence in physics. Notable examples encompass Weber, Euler-Cauchy, and Bessel
equations, highlighting the broad applicability of our proposed method. Diverging from established
transforms like the widely used Laplace transform, our innovative approach introduces a symmetrical
model, offering a distinct and founding perspective to the field.
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1 Introduction

Recently, Bougoffa and Rach proved the
following formula [1]
Lemma 1

) (2n)
f_oo e~ fx)dx = \/%Z‘” 7O 650 (1.1)

n=0 (4q)np;’

provided that the function f is infinitely
differentiable in R and, in a neighborhood of x = 0,
it equals its Maclaurin series expansion about x. Here
we must assume that f is such that the integral in the
left hand side of (1.1) exists (that is, has some finite
value). This assumption is usually satisfied in
applications. We shall discuss this in section 2.

This formula has obtained by a new combination
with the Adomian decomposition method [2, 3] and
the explicit solution

(¢-x)2
u(x, t) = ikt d§,

1 (o8]
— e
V4kT[t -f_oof g
—o<x<oot>0
(1.2) of the initial — value problem for the heat

equation
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ou %u
FYie km,k >0,t=> O,u(x, 0) = f(x) (1.3)
This is a new helpful tool in calculating the
Gaussian integrals [4] as a convenient convergent
series.
Indeed, if we substitute f (x) = 1 into (1.1),

then we obtain

[ee]
f e—ax’ dx=\/£,a>0.
— 00 a

The alternatives of the Gaussian integral can be
derived from (1.1). For example, the evaluation of

(1.4)

J‘jooo e~ax% x 2Ny — \/E(an)!

4nq™2n

(1.5)

is obtained by letting f(x) = x?™,n = 0 into (1.1). It
can be checked easily that different definite integrals
of the above Gaussian form can be derived from
formula (1.1).

1- The evaluation of the well-known integral:

@ e—a2(1+x%) -

f ————dx =—erf(ca)can be evaluated
o tx 2

directly from (1.1) by letting f(x) = -y with
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f(0)=1,f"(0) = =2, f®(0)=4!.. A simple
substitution leads to
2-
e ® (c)n2n)!
f_ dx= 7[1 +Zn=1—4na2nnz ] (1.6)
Since &2 = 27(1-3 -5~ (2n— 1)). H
mce il = n . fence

o0 o—a?x? N I 1-3-5---(2n-1)
f dx =;[1+ anl(_l)n—]-

o 1+x2 (2a2)n

(1.7)

Using the asymptotic
complementary error function

expansion of the

—x2
eX

= [1+ 2:1021(_1),1 1-3~5...(2n—1)]’ (1.8)

(2x?)"

erfc(x) =

we obtain

(1.9)

1+x2

o e—a2(1+x2)
f ———dx = werfc(a).
—0o0

3- The Dawson’s integral [5, 6]:
This integral ffooo D(x) dx is called the Dawson’s
integral, where D(x) = e* f; et’ dt and it arises in

computation of the Voigt lineshape in heat
conduction and in the theory of electrical oscillations

in certain special vacuum tubes. It can be derived
from formula (1.1) that

[5. D@ dx=[" e ™[] e dtldx = 0.(1.10)

4- The plasma dispersion function [7]:

The plasma dispersion function when the
imaginary component of ¢ is equal to zero and is

o8] 2
1 e ¥
defined as Z(f) = ‘/_Ef_oo;dx
An immediate consequence of this is

2n)! 1
zZ(§) = _EWW =

1 11_ 31 15 1
= ‘E(1+E§+Z§+??+“')' (1.11)

This follows simply by letting the following in
(1.1

1
=%

F@EM0) = —2n)! 2L n > 1. (1.12)

The reader will find in the Table 1 different
definite integrals of the above forms which can be
easily calculated by (1.1).

No. ©
° f& f e’ f(x)dx,a>0
1 1 =
Va
2 x? N
2ava
3 x™, nisodd 0
4 x* 3T
4a2\/a
5 x2n @n)!'Vr
4—"a"+%n'
6 x? NE
[ R ab _
P N mhe® (1 — erf(Vab))
7 1 NI
Y Te“b(l — erf(vab))
8 cosrx N
—e 4a
Va
9 = Vi
—e4a
Va
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Table continuation

No. @
° F&) f e ¥ f(x)dx,a >0
10 xe 2T rvm 2
X ea
ava
11 x2e=2T* 1+rm . 2r2_r?
P —_— a
2 ve¢ e
=T
12 ex? ge—zﬁ
a

Table 1: Some functions and their transforms
f_oo e~ f(x)dx,a > 0.

Another important
elementary integrals is
Lemma 2 Define the function F,, by

observation on some

Fy(x) = [, the % dt,a>0. (1.13)

Then E, satisfies

Vr(2n)!

Forn(x) + Fon(—x) = T[El:?
4Mg" " 2n!

Fons1(x) + Fapyq1(=x) = 0.

(1.14)

Proof. Replacing x with—x, we obtain

Fo(=x) = [ the™®dt,a> 0. (1.15)

If we make the transformation t — —t, we get
E(—x) = [* (-1)"t"e % dt,a > 0.
Thus,

Fon(x) + Fpn(=x) = [©_t?e~9%"dt. (1.16)

Hence, from Table 1, we have

Vr(2n)!
Fyn (%) + Fan (—x) = 222

4ng™an

(1.17)

We note that if we choosen = 0and a =§ ,
then Q(x)+0Q(—x) =1, Qx) =

t2
\/% fxoo e 2dt is the Q- function corresponds to the

where

tail probability of standard normal distribution [8].
Similarly, we have Fyp, 11 (x) + Fope1(—x) = 0.
The following recurrence follows by integration

by parts
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Lemma 3 The function F, satisfies the following
recurrence

Fa() =5 Py () + e (L18)
with
Fo(x) = % (1 — erfc(vax)) and
Fi(x) = 5-e™%", (1.19)

Also, an alternative expression for F,,,can be
obtained from the recurrence and mathematical
induction

Lemma 4

1 2 n (\/_ )Zk
Fansa () = gme ™ ) L5202 (120)

Many integral transforms of the familiar Laplace
transform L(f;s) = fooo e 5 f(x)dx with kernel

k(s,x) = e™5* are introduced such as the Laplace-
Carson transform, which is defined by [9]

Lf();p) =p [, e™* f(x)dx,p > 0 and the so-
called

1
Froa =1

aJo
been the subject of several papers. This integral

transform is obtained from the Laplace-Carson
transform by means of the trivial change of variable
pP=1.
Sumudu transform may very readily be deduced from
the corresponding properties for the standard Laplace
transform. These integral transforms have been
demonstrated to provide accurate and computable
solutions for a wide class of linear differential
equations. It is imperative to acknowledge that while

Sumudu transform:

+ 00 1

e @ f(x)dx,q > 0, which has

All the properties demonstrated for the
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the Laplace transform is a powerful tool for solving
certain differential equations, it is not universally
applicable. Indeed, not all functions possess a
Laplace transform, rendering it inadequate for certain
classes of linear ordinary differential equations

(ODEs). For in- stance, the function f(x) = e’ does
not have a Laplace transform, as the integral diverges
for all values of s.

The  transformation  L(f(x);a) with its
Properties 1-5 (Theorem 2) offers a powerful solution
for tackling different linear ordinary differential
equations. Among the equations are the Euler-
Cauchy equation, Weber’s equation [10], and
associated Bessel’s equation [11], etc. By converting
them into more manageable forms, we can compute
one solution with ease, and then the second
independent solution can be deduced by the method
of reduction of order to such equations. This
approach is de- tailed after Section 3. This integral
transform is also particularly significant in physics
boundary value problems, as it can solve linear
equations with initial and boundary conditions that
the Laplace transform cannot handle. Therefore, our
newly proposed integral transform presents a
promising alter- native for addressing such equations.

The symmetry transformation technique involves
simplifying the differential equation into a first-order
linear differential equation, which can then be solved
with ease through an inverse transform. Although this
method is effective, it may sometimes yield a second-
order ODE with variable coefficients. Hence, this
approach is only successful under suitable conditions
on the coefficients of the ODE.

To provide a comprehensive understanding of the
meaning of this transformation in mathematical
terms, we will present a detailed discussion of its
integral transform definition, including its formula,
properties, and practical applications. This will allow
for a thorough exploration of its conceptual
underpinnings and how it can be effectively utilized.

2 A new integral transform

We begin by stating the following definition:

Definition 1 Let f be a function defined for all
x = 0. Our new integral transform is the integral of
f times g—ax? ,a > 0 from —oo to 4o, and is
denoted by L(f (x); a):

400

L)) = [ e f(x)dx,a>0. (2.1)
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Here we must assume that f satisfies
If (x)| < MeP**forall — o0 < x < 4+00,a > b, (2.2)

where b and M are some constants, such that the
integral exists. then
L(f(x); a) is a function of a, say, B(a), and

L Ea) = [ e f(0dx = B(@), (2.3)
a>0.

Furthermore, if f: R— R is infinitely
differentiable and, in a neighborhood ofx = 0, it
equals its Maclaurin series expansion about X, then

_ [=N\T %
B(a) = \/;znzo (4a)™n!’

The given function f in (2.3) is called the inverse
transform of B(a),a > 0 and is denoted by L™1(B);
that is, f(x) =L"1(B(a)),a >0 provided that
L(f(x);a) # 0.

In order to guarantee the convergence of the

(2.4)

: AR O)
series z @ for a > 0, we must assume that
n=0 '

the higher order derivatives of f (x) at x = 0 are
bounded. We first note that, it may happen in certain
cases that L(f(x); a) exists for a given function f,
but L71(B(a)) is not uniquely determined. This can

be seen from the example given in Table 1-No.
2

9: L(ef™;a) = % exa, which shows that the inverse

of this transform is not essentially unique. This is true
in many situations in the application of this transform
for solving second-order ODEs. It is a very
convenient one, since it allows us to find two
solutions. This can be seen from a simple example in
Section 3.

Another observation that we need is that it can be
easily checked that £L(f (x); a) for any odd function,
for example f(x) = x™,n =1,3,.... In this case, a
useful modified of this integral transform is given by

L@ = [, e f()dr,a>0.2.5)In
general, for any even or odd function, we may say
that the inverse of a given transform is essentially
unique. In particular, if two continuous functions
have the same transform, they are completely
identical, and in this case we could determine the
function f(x) from its transform B(a) provided that
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it was possible to express B(a)in terms of simpler
functions with known inverse transforms. Indeed,
any odd or even function f can be determined from its
transform B (a) using the Mellin’s Inversion Formula

9(0) = L7 (B(@) =

1, +iT
=— lim [ e B(a)da,t >0,
27 T—+400 “V—IT

(2.6)
where y is a positive constant and is greater than the
real part of all singularities of B(a), and the function
gt) = %\/f); can be done with the substitution ¢ = x°.
We give an example to illustrate the application of

this inversion. Let B(a) = L Substituting into the

7=
Mellin’s inversion formula, we find that
1 Y+iT 1
gt) =— lim et —da =

270 T-+oo y—iT \/C_l

y+iT _ 1

1 ,
e Lerf el Ly = 5 27)

Consequently, f(x) = \/%

We would now like to examine some examples
of functions that do not have a Maclaurin expansion.
The first example in this section reproduces a related
integral to L(f (x); a).

Examples [12, 13]

too, 2 —a.x2\ 1
1- f_oo (e QX" _ g7 l2X );dx,al,az > 0.

This integral can be obtained by writing
_ 2 _ 2y 1 (A1 442

(e aix? _ g-aix );_ fal e~ dt. Thus
2-

oo 2 2 1
f (e™MX" — g7a2X )—de =
x
—00

2Nn(Va; —Vay).

-b © -b
3- L(ex*;a) = f+ e~ 37 dx =

—00

T
£e‘z‘/ﬁ, b > 0.

Va
4- L(lnxz;a=i)=ma

202
(Ino? — o —1n2).

s [T e (1 e ax =
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Vi
W a,b > 0.

We have

Theorem 1 If f is defined and piecewise
continuous on every finite inter-val on the x —axis
and satisfies the condition (2.2). Then the new
integral transform L(f (x); a) exists for a > b.

Proof. Since f is piecewise continuous and
g—ax’ f(x) is integrable over any finite interval on
the x —axis

i (s )] =
=[[% e feodx| < [ e If()ldx <

Mf e~(@=b)x? gy

From (No. (1)-Table 1), we have
®  —(a—b)x? __r
f_me dx—m. -
Thus |L(f (x); @)| < M\/a:fb,a > b.

It can be checked easily that the condition (2.2)
holds. Indeed, if we choose, for example, f(x) =
x?", then from Maclaurin series that is, x?" < n! ex’

and so on.
Theorem 2 Let L(f(x);a) =

J-_oooo gax’ f(x)dx = B(a),a > 0, then

- LOEf(x);a) = — 22 (a).
2- LGxf'(¥);0) = —[B(@) + 22 (a)].
- L(f"(0);0) = —2a[B(a) + 205 (a).

4 LG (0 a) = 2 2a (B(a) +

dB
2a - (a))].

5- L(e"*'f(x);a) = B(a—b),a>b
(Shifting Property).

6- eb**f(x) = L7Y(B(a — b)),a > b

Property 2 holds if fis continuous on (—oo, ©) and
satisfies the condition (2.2) and f ' is piecewise
continuous on every finite interval on (—o, o).
Similarly, Property 3 holds if fand " are continuous
on (—o, ) and satisfy (2.2) and f " is piecewise
continuous on every finite interval of (—, ).

Proof.

1-B(a) = f_oooo g—ax’ f(x)dx,a > 0.

Differentiating B(a) under the integral sign with
respect to the parameter a, we obtain

International Journal of Mathematics and Physics 15, Nel (2024)
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dB *© 2
_— = ! = — —ax 2 =
ia B'(a) f_ooe x*f(x)dx
—L(x*f (x); @).
2- Assume that f'(x) is continuous on (—oo, ).
Thus, L(xf'(x);a) = f eax’ xf'(x)dx.

—00

Since f satisfies| f (x) | < Meb*?, integration
by parts yields

Lxf'(x);a) = = f_ooe“"xz f)dx +

2af e~ %" x2f (x)dx

The integrals L(f(x);a) and L(x*f(x);a); a)
exist fora > b. Sothat L(xf'(x); a) exists fora >
b. Using now B(a) = L(f(x);a) and B'(a) =
—L(x%f(x); a) , we obtain the desired property.

If f' is piecewise continuous on(—oo, ). Then,
the proof is similar.

3- Assume that f"is continues on (—oo,0).
Thus, by Definition 1, we have L(f''(x);a) =

f_io e~ £ (x)dx.
Integration by parts yields

L (x);a) = —2af_ e~ %" £(x)dx

oo

+(2a)? foo e~ x2f (x)dx.

Since f and f’satisfy (2.2), the two integrals
L(f (x); a)and L(x?f (x); a)exist fora > b. So that
L(f"(x);a) exists for a > b, and the proof is
complete.

The proof of this for f" is piecewise continuous
on (—oo, o) is similar.

4- Properties 4 follows simply from Definition
1 and Property 3.

5- L(eb"zf(x); a) =
f e~ (@D)x* £(x)dx = B(a — b),a > b.

—00

In order to verify the accuracy of our present
method, we present some elementary examples.

3 Applications: Solutions of linear second-
orders ODE

It is important to note a key difference in our
approach before using this transformation. Unlike the
Laplace, this new integral transform transform
focuses On expressing B(a) and its derivatives B'(a),
B''(a),... with respect to a while dealing with the
derivatives of functions. This is explained in
Properties 1-6. Our approach works in general for
finding one solution for the second-order differential
equations by using the properties that govern this
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transform. Therefore, considering initial and
boundary conditions at the first step is not necessary
for any obtained solution.

It happens quite often that one solution can be
found by this integral trans- form. Then a second
linearly independent solution can be deduced by the
method of reduction of order, which works easily in
general. It is important to note that when using the
new transform, the general solutions obtained should
contain undetermined constants and these constants
can be deter- mined by including the initial or
boundary conditions that are given. To help
understand this process, we provide some examples
below:

3.1 Equation of free oscillations

We begin by considering the linear equation for
free oscillations

yu _ WZy — 0’_00 <x < oo, (31)

Applying (2.3) to both sides of Eq.(3.1), we have
L(y";a) —w?L(y;a) =0 (3.2)

Using Definition 1 and Property 3, we obtain
—2a[B(a) + 2a = ()] - w?B(a) = 0. (3.3)
Thus,
(20)2 22 (a) + W? +2a)B(a) = 0. (3.4)

which is a linear first-order equation. Solving for B,
2

w
we obtain B(q) = \/C—_eﬁ, where C is a constant of
a

integration. Hence from Table 1, we have e*"* =
w2
o <%e_> Thus y; = C;e™* and y, = Ce™,

where C; = \/% Consequently the general solution is

then given by y = Cye"* 4+ C;e™"*. The constants
C; and C; follow easily from the initial or boundary
conditions of this equation.

3.2 Weber Equation
Consider the linear Weber equation
y" = (b%x2 +b)y =0,—0 <x <, (3.5)
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46 A new transform for solving linear second-orders ODE with variable coefficients

which often arises in various applications. Applying
(2.3) to both sides of Eq.(3.5), we have

L(y";a) —b?L(x%y;a) — bL(y;a) = 0. (3.6)

Using Definition 1 and Properties 1 and 3, we
obtain

—2a[B(a) +2a52 (@)] +.

+b2 —(a)—bB(a) =0 3.7)

Thus,
(b? - 20)?) 52 (@) — (b + 20)B(a) = 0, (3.8)

which is a first-order linear equation. Solving for B,
c

ab’
2

constant of integration. Hence from shifting property,

b2 c
y, = Ciez” ,C; = \/—E.The
independent solution y, can be obtained by the
method of reduction of order. Indeed, if one solution
y1 is known to the homogeneous linear ODE: y"’ +
p(x)y’ + q(x)y = 0, then, y, = [ U(x)dx where

U(x) = %e‘fp(x)dx.
Vi

So that the desired second solution of Weber

equation
-1 Sx2 ¢ —bx? . Nm Dx2
Y2 = -e? [e dx = 2e43 & erf(\/gx).lt

follows that y; and y, form a basis of solutions.
Hence, the general solution is obtained y = C{y; +
C5y, and the particular solution can be deduced from
the general solution and the initial conditions or
boundary conditions.

. b .
we obtain, B(a) = a>-, where C is a

we  obtain second

3.3 Euler-Cauchy Equation
Consider the linear Euler-Cauchy equation
x%y" +bxy' +cy =0,—0 < x <. (3.9)

A simple application of (2.3) with Properties 2
and 4 to both sides of Eq.(3.9) leads to

2
7 (@ + Qa5 - %—00+
+(2 b+ c)B(a) = 0

@2 s
(3.10)

Note that the Laplace and Sumudu transforms
convert Eq. (3.9) into

Int. j. math. phys. (Online)

S2Y"(s)+s@=b)Y' (s)+(2—=b+0)Y(s) =0
and s2Y"'(s) + bsY'(s) + cY(s) = 0, respectively.
If we assume that 2— b+ c¢c = 0, thatis b =
¢ + 2, then this integral transform takes the Euler-
Cauchy differential equation and turns it under a
suitable condition on its coefficients into a first-order
linear differential equation. Thus, Eq.(3.10) becomes

a2 @+ Q2a)(5—b) = (a) =0.S0  the

Sumudu transform 1is not a best choice for Euler-

Cauchy Equation. The solution is then simple
b-3

B(a) = %QT + D, where C and D are constants
of integration. If we assume that 3—b = 2n+
1,n=1,2,.., that 18, b =2-2n,

then B(a) = — ch+1 prw + D. Using B (a) —» 0 as
a » o to getD = 0. Hence, from Table 1, we
nco—_ C 4™n! n=
ren V2 (2n)!(2n+1)’

1,2, ..., which is indeed a solution of the Cauchy-
Euler equation:

x%2y" +2(1—-n)xy' —2ny =0,.

—o<x <™

obtain that y, = C,x?

(3.11)

The second independent solution y, can be also
obtained by the method of reduction of order.

3.4 The associated Bessel Equation
Consider the linear associated Bessel equation

x2y" +2(m+ Dxy’ +,
[x2—1(1+2m+1)] —0,—0<x <o (3.12)

where | and m are parameters. Applying (2.3) and
using Properties 1, 2 and 4, we obtain

(261)2
[2m +I(l+2m+1)]B(a) = 0

(a) + (6a — 4am — 1)—(a) -
(3 13)

Proceeding as in Example 3, if we assume that
2m + (Il + 2m + 1) = 0, then, Eq.(3.21) can
be converted into

2 & 2@+ (6a —4am — 1) (a) = 0.(3.14)

(2a)

32me “sa, As a
a z

Hence — (Cl) specific

1
example, let m = 1. Thus E (a) = %e_ﬁ. Using
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m,

Property 1: L(x%y";a) = — Z—z and from Table 1, we

. . . cosx .. . . .
immediately obtain y; = C; 7 which is a solution

to Eq. (3.12) when
m = land!l = lorl = 2.
3.5 Other Equations

We would now like to examine other equations.
Let

x2
xy +y=(x2+1)ez,—o0<x <o (15
Applying (2.3) to both sides of Eq.(3.15), we
x2
obtain, L(xy';a) + L(y;a) =L ((xz +1)ez; a).

(3.16)
Using Property 2 and Definition 1, we obtain

- [B(a) + Zad—B(a)] + B(a) =
da
=L <(x2 + 1)ex7; a>. (3.17)

x2 x?
Since L ((x2 +1)ez; a) =L <x2e7; a> +
2

x2 x2 X
L <e7; a), L(eT; a) = ﬁl and L(xzeT; a) =
[a-2
2

v 1 1
W =, where a > > We have
(a‘a)\/a—z
dB v 1 Vr 1
E(a)=—7” o - — \/7T_1,a>5.(3.18)
2a a—E a—E 2a a—E
Solving for B, we obtain
T 1
B(a) = —£ da —
2J, (a-1) Ja-1
ala—-5) Ja=>
—m [ da. (3.19)
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Since
[——da = VZarctan(v2a —1) (3.20)
Za/a—%
And

3
) ! da = —2zarctan(v2a — 1). (3.21)

1 1
Za(a—a) a—

_ V2m .
We have B(a) = m+ C. Using B(a) —
0asa— o, to get B(a) = G :
-t
2

x2

It follows that, from Table 1, y;(x) =ez.

Consequently, the general solution to this equation is

construct as the sum of y; and z, where z is the

general solution to the corresponding homogeneous
2

X
xy' +y = 0. Hence y(x)= 67+£ and the
constant C can be determined from the IC y(x,) =
a,xq # 0.

4 Conclusion

This new integral transform has been
demonstrated to provide accurate and computable
solutions for a wide class of linear second-order
differential equa- tions with variable coefficients
such as Euler-Cauchy Equation, Weber’s equa- tion
and Bessel’s equation. This integral transform takes
a differential equation and turns it into a first-order
linear differential equation, which is simpler than the
given second-order and can be easily solved,
applying the inverse transform gives us our desired
solution. But sometimes the application of this
integral transform gives a second-order ODE with
variable coefficients, and this will show that the
present method works well only under suitable
conditions on the coefficients of this ODE.
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