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Abstract. In this study, we investigate the computational advancements in simulating gravitational lensing, 
particularly focusing on the Schwarzschild black hole model. The traditional approach of back ray tracing, 
where photons are traced back from the observer to the source, is computationally intensive, especially when 
aiming to achieve high-resolution images of lensing effects around black holes. By employing a numerical 
method that integrates the Schwarzschild metric with initial conditions derived from the observer’s plane, 
we map the deflection of light around a black hole to generate simulated images of gravitational lensing.
The core of our study is the comparison between traditional CPU-based (Central Processing Unit-based) 
computations and GPU-accelerated (Graphics Processing Unit-accelerated) processes using the Numba 
library. Our findings reveal that GPU acceleration, with its parallel processing capabilities, significantly 
reduces computation time, particularly as the complexity of the simulation increases with larger grid sizes. 
This computational efficiency is crucial for simulations of gravitational lensing, where the number of 
independent calculations grows exponentially with the resolution and accuracy of the desired image.
Our study underscores the importance of leveraging GPU technology for astrophysical simulations on 
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Abstract. In this study, we investigate the computational advancements in simulating gravitational lensing, 

particularly focusing on the Schwarzschild black hole model. The traditional approach of back ray tracing, 
where photons are traced back from the observer to the source, is computationally intensive, especially when 
aiming to achieve high-resolution images of lensing effects around black holes. By employing a numerical 
method that integrates the Schwarzschild metric with initial conditions derived from the observer's plane, we 
map the deflection of light around a black hole to generate simulated images of gravitational lensing.

The core of our study is the comparison between traditional CPU-based (Central Processing Unit-based) 
computations and GPU-accelerated (Graphics Processing Unit-accelerated) processes using the Numba library. 
Our findings reveal that GPU acceleration, with its parallel processing capabilities, significantly reduces 
computation time, particularly as the complexity of the simulation increases with larger grid sizes. This 
computational efficiency is crucial for simulations of gravitational lensing, where the number of independent 
calculations grows exponentially with the resolution and accuracy of the desired image.

Our study underscores the importance of leveraging GPU technology for astrophysical simulations on 
personal computers, offering a substantial improvement in performance over CPU-based methods.
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Introduction

One of the most astonishing predictions of 
Einstein's equations corresponds to the final state of 
the gravitational collapse of a massive star: a Black 
Hole. These enigmatic objects, characterized by their 
intense gravitational fields from which not even light 
can escape, are described by solutions to Einstein's 
field equations, known as metrics. The 
Schwarzschild metric, for example, describes a non-
rotating black hole [1], while the Kerr metric 
accounts for one that rotates [2]. These metrics play 
a crucial role in understanding the spacetime 
curvature around black holes and the resultant 
phenomena such as gravitational lensing.

A monumental achievement in the observation of 
black holes was made by the Event Horizon 
Telescope (EHT) collaboration, which captured the 
first-ever image of a supermassive black hole located 

at the center of the galaxy M87 [3]. This historic 
image, showing the shadow of the black hole 
surrounded by a ring of light distorted by its massive 
gravitational field, provides unprecedented direct 
visual evidence of a black hole's existence, and offers 
a profound confirmation of general relativity in the 
strong gravity regime. The EHT's success not only 
marks a significant milestone in observational 
astronomy but also highlights the critical role of 
simulations in interpreting the bending of light and 
the structure of the space around black holes.

Furthermore, the EHT has also studied the 
supermassive black hole at the center of our own 
Milky Way galaxy, known as Sagittarius A* (Sgr 
A*). Recent observations have similarly captured the 
shadow of Sgr A*, providing additional invaluable 
data that reinforces our understanding of black hole 
environments and the behavior of light in intense 
gravitational fields [4]. These studies of both M87 
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and Sgr A* enhance our comparative understanding 
of black hole dynamics and continue to validate the 
theoretical frameworks underpinning general 
relativity.

There are various methods to simulate the lensing 
effects caused by massive objects like black holes [5].
One such method is the back ray tracing method [6],
which effectively reverses the path of light from the 
observer to the source through the curved spacetime 
around a massive object. This method allows for the 
accurate simulation of the bending of light as it passes 
near a massive object, providing insights into the 
observable phenomena associated with gravitational 
lensing.

In this work, we will focus on accelerating the 
computation of the lensing effect, which utilizes the 
back ray tracing method, by leveraging the parallel 
processing capabilities of GPUs. The use of GPUs for 
such simulations represents a significant 
advancement over traditional CPU-based 
computations, allowing for a substantial increase in 
computational efficiency and speed. By employing 
simple tools available in Python, we aim to 
demonstrate the feasibility and benefits of using GPU 
acceleration for the simulation of gravitational 
lensing effects, offering a more accessible and 
efficient approach for researchers and enthusiasts in 
the field of astrophysics. 

Models

Schwarzschild Black Hole
A Schwarzschild black hole represents the 

simplest type of black hole, which is non-rotating and 
spherically symmetric [1]. We choose to focus on the 
Schwarzschild metric for this study because it offers 
the simplest model to illustrate our goals, allowing 
for a clear understanding of the fundamental 
principles without the complexities introduced by 
rotation or charge. It is described by the 
Schwarzschild metric, a solution to Einstein's field 
equations in general relativity. The Schwarzschild 
metric is given by the following equation in spherical 
coordinates (𝑡𝑡𝑡𝑡, 𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃,𝜑𝜑𝜑𝜑)

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = −�1 −
2𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟

� 𝑐𝑐𝑐𝑐2𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 +
1

1 − 2𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2 +

+𝑟𝑟𝑟𝑟2𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + 𝑟𝑟𝑟𝑟2 sin2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2                   (1) 

where 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 is the spacetime interval, 𝐺𝐺𝐺𝐺 is the 
gravitational constant, 𝑀𝑀𝑀𝑀 is the mass of the black 

hole, c is the speed of light, and 𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃,𝜙𝜙𝜙𝜙 are the radial, 
polar, and azimuthal coordinates, respectively. The 
term 2𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀/𝑐𝑐𝑐𝑐2 represents the Schwarzschild radius, 
beyond which spacetime is significantly curved by 
the mass of the black hole. Further, we will assume 
𝐺𝐺𝐺𝐺 = 𝑐𝑐𝑐𝑐 = 1, as is commonly accepted in the GR.

The equation of motion for light, or photons, 
moving in the vicinity of a Schwarzschild black hole 
can be derived from the Schwarzschild metric. In 
context of the energy 𝐸𝐸𝐸𝐸 and the angular momentum 𝐿𝐿𝐿𝐿
the equation of motion can be written as [7]:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑                                (2.1) 

�̈�𝑟𝑟𝑟 = −[
𝑀𝑀𝑀𝑀

𝑟𝑟𝑟𝑟2 − 2𝑀𝑀𝑀𝑀
𝐸𝐸𝐸𝐸2 +

𝑀𝑀𝑀𝑀
2𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟2

�̇�𝑟𝑟𝑟2 +

+(2𝑀𝑀𝑀𝑀 − 𝑟𝑟𝑟𝑟)�̇�𝜃𝜃𝜃2 + 2𝑀𝑀𝑀𝑀−𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑4 sin2 𝜃𝜃𝜃𝜃

𝐿𝐿𝐿𝐿2]            (2.2) 

𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑣𝑣𝜃𝜃𝜃𝜃                              (2.3) 
 

�̈�𝜃𝜃𝜃 = −2
𝑑𝑑𝑑𝑑
�̇�𝑟𝑟𝑟�̇�𝜃𝜃𝜃 + cos𝜃𝜃𝜃𝜃

𝑑𝑑𝑑𝑑4 sin3 𝜃𝜃𝜃𝜃
𝐿𝐿𝐿𝐿2                   (2.4) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑2 sin2 𝜃𝜃𝜃𝜃

                             (2.5) 

These five equations form the basis for 
implementing the back ray tracing method, where 𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑
and 𝑣𝑣𝑣𝑣𝜃𝜃𝜃𝜃 represent the velocity components 𝑟𝑟𝑟𝑟 and 𝜃𝜃𝜃𝜃
directions, respectively. 𝐸𝐸𝐸𝐸 denotes energy, and 𝐿𝐿𝐿𝐿
denotes angular momentum, both of which are given 
in the form [8].

𝐸𝐸𝐸𝐸 = �−𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡                             (3) 

𝐿𝐿𝐿𝐿 = 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑                                  (4) 

Back ray tracing
In contrast to natural lensing image generation, 

there is a noticeable difference when the lensing 
image is generated computationally. One of the most 
effective methods of generating this process using 
computational means is the back ray tracing method, 
the essence of which is the propagation of photons 
back in time from the observer to the source of 
gravity.

To obtain the lensing image of a black hole using 
the back ray tracing method, we position our black 
hole model at the origin (see Figure 1a) within 
Minkowski spacetime and encircle it with a virtual 
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background sphere, colored in four colors: red, green, 
yellow, and blue. The observer is located inside this 
background sphere and looks towards the exact point 
where all four colors intersect. In the absence of a 
black hole, the observer would see a picture as 
depicted in Figure 1b.

Consider two local coordinate systems: (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) and 
(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃,𝜑𝜑𝜑𝜑). The first system is associated with the observer, 
and the second with the black hole. In this setup, the 
𝑧𝑧𝑧𝑧 −axis is directed towards the black hole. At the point 
𝑧𝑧𝑧𝑧 =  0 , there is an observer whose coordinates in the 
black hole’s reference frame are (𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂,𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂,𝜑𝜑𝜑𝜑𝑂𝑂𝑂𝑂).

Figure 1a – Schematics of the mapping
of Black Hole and observer

Figure 1b – Grid representing the background sphere
in flat spacetime

Because the geodesic equations for light rays are 
represented in Schwarzschild metric coordinates 
(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃,𝜑𝜑𝜑𝜑), it is necessary to convert the initial 
conditions of the light ray on the image plane. This 
transformation can be done using expressions (5.1) –
(5.6). More details about these expressions can be 
found in the work [9-12]:

𝑟𝑟𝑟𝑟(0) = �𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂2 + 𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2                   (5.1) 

𝜃𝜃𝜃𝜃(0) = cos−1 �𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂 cos𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂+𝑦𝑦𝑦𝑦 sin𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂 
𝑑𝑑𝑑𝑑(0)

�           (5.2) 

𝜑𝜑𝜑𝜑(0) =
=  tan−1 �(𝑦𝑦𝑦𝑦 cos𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂−𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂 sin 𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂 

(𝑦𝑦𝑦𝑦 cos𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂−𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂 sin𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂)𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂−𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂
�     (5.3) 

 

and the initial tangent vector (�̇�𝑥𝑥𝑥, �̇�𝑦𝑦𝑦, �̇�𝑧𝑧𝑧) ≈ (0,0,1) is 
translated into

�̇�𝑟𝑟𝑟(0) = − 𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂
𝑑𝑑𝑑𝑑(0)                                 (5.4) 

�̇�𝜃𝜃𝜃(0) = �𝑥𝑥𝑥𝑥2+𝑦𝑦𝑦𝑦2� cos𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂−𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂 sin𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂 
𝑑𝑑𝑑𝑑2(0)�𝑥𝑥𝑥𝑥2+(𝑦𝑦𝑦𝑦 cos𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂−𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂 sin𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂)2

        (5.5) 

�̇�𝜑𝜑𝜑(0) = 𝑥𝑥𝑥𝑥 sin𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂 
𝑥𝑥𝑥𝑥2+(𝑦𝑦𝑦𝑦 cos𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂−𝑑𝑑𝑑𝑑𝑂𝑂𝑂𝑂 sin2 𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂)

              (5.6) 

Thus, by discretizing the observer plane and 
numerically solving equations (2.1)-(2.5) for each 
cell (𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠 ,𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠) considering the initial conditions (5.1)-
(5.6), we obtain the image of the black hole as shown 
in Figure 2. The massive computations are performed 
by Runge-Kutta-4 method.
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Figure 2 – Creating an image of a black hole's lensing effect from the viewpoint
of a distant observer requires tracing the paths of light rays backward 

to each pixel on the observer's image plane

Figure 3 – Lensing of Schwarzschild Black Hole 
with mass 𝑀𝑀𝑀𝑀 =  1. The observer is at initial position

𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂  =  15, in the equatorial plane (𝜃𝜃𝜃𝜃𝑂𝑂𝑂𝑂 = 𝜋𝜋𝜋𝜋/2). 
The background sphere is at 𝑟𝑟𝑟𝑟 =  30.

The image contains 1000 × 1000 cells.
(𝐺𝐺𝐺𝐺 = 𝑐𝑐𝑐𝑐 = 1, geometric units)

As anticipated, the shadow depicted in figure 3 
forms a precise circle, reflecting the spherical 
symmetry characteristic of the Schwarzschild Black 
Hole. It's crucial to highlight several aspects of the 
image [13].

• Photons associated with large absolute values 
of 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦 are considered direct photons. This means 
they do not circumnavigate the Black Hole on their 
way to the background. Additionally, the further we 

move away from the Black Hole, the more the 
spacetime resembles Minkowski spacetime.

• In addition to the shadow, examining Figure 3 
reveals two distinct areas (an inner and an outer 
zone). The inner zone is associated with photons that 
have circled the Black Hole once.

• Should there be a white spot in the background 
image, as depicted in Figure 1a, the act of lensing 
would result in the creation of an Einstein ring. This 
ring would precisely align at the boundary separating 
the inner and outer zones mentioned previously

Results and Discussion

Acceleration by python tools
Here, we will examine the code's flowchart for 

obtaining the image of a lensing object and discuss 
modifying this code to run on a graphics processing 
unit (GPU) using the Numba package.

First, let's look at the flowchart of the code 
designed to run on a CPU (see Figure 4). As 
illustrated in Figure 4, the program is structured as 
follows: it begins with the initialization of input 
parameters, then calculates the components of the 
metric tensor (in our case, the Schwarzschild metric). 
Following this, a ray is launched from each cell on 
the observer's plane in the reverse direction with 
unique initial conditions, and the ray's position is 
calculated at each step until it either enters the event 
horizon area or leaves the outer sphere. The history 
of each ray is calculated sequentially, one after 
another. After determining the history of all rays, the 
image is formed.
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Figure 4 – A simplified block diagram representing 
the flow and functionalities of the code running on the CPU

From the flowchart presented, it becomes 
immediately clear that this task is highly suited for 
parallel computation since it is evident that tracking 
the history of each ray in parallel, rather than waiting 
for the completion of the previous one, is the most 
efficient approach. The easiest way to implement this 
is to use the Numba library [14]. Numba is a just-in-
time compiler that accelerates Python code, 
especially for numerical computations, by converting 
it to machine-level code. It supports both CPU and 
GPU execution, making it ideal for parallel 
computing tasks. With Numba, developers can 
achieve significant performance improvements 
without major changes to their existing Python code, 
leveraging the power of GPUs for faster data 
processing and analysis. To parallelize the code and 
run it on a graphics processor using the Numba 
library, it suffices to add the 
@jit(target_backend='cuda') decorator to all 
functions where calculations are performed relative 

to a given ray. As a result, we obtain code designed 
for execution on a graphics processor, the flowchart 
of which is presented in Figure 5.

Next, we will present a graph comparing the 
computational time of the code executed on a CPU 
versus the code executed on a GPU using the Numba 
package.

The comparison plot (Fig. 6) shows that the 
calculation time of the original (non-parallel) method 
shows a linear increase on a logarithmic scale, 
indicating a power law relationship between grid size 
and calculation time. In contrast, the modified 
method using CUDA shows a nonlinear increase. 
This nonlinearity arises from the overhead associated 
with parallel processing and memory management on 
the GPU. As grid size increases, the benefits of 
parallelization become more pronounced, but the
initial overhead and complexity of managing large 
data sets across multiple cores results in a nonlinear 
trend in computational efficiency.
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Figure 5 – A modified block diagram representing
the flow and functionalities of the code running on the GPU

Figure 6 – The graph illustrates the comparison of computation time between
the original (non-parallel) and modified (CUDA-parallel) methods when increasing

the grid size from 10x10 to 1000x1000. Here both axes are presented on a logarithmic scale
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Conclusion

Our study highlights the considerable 
computational benefits of applying GPU acceleration 
with the Numba library for gravitational lensing 
simulations. By transitioning from CPU to GPU 
execution, we noted a significant reduction in 
computation time, especially for larger grid sizes, 
underscoring the efficiency of parallel processing. 
The use of Numba stands out as the simplest method 
for parallelizing Python code to run on a GPU, 
offering a straightforward path to enhance simulation 
speed. This technique not only renders complex 
simulations more accessible but also paves the way 

for broader and more detailed astrophysical studies.
In the future, we plan to consider various quadrupolar 
space-times, both static [15-21] and stationary [22] 
and in this case, using the GPU for calculations will 
be even more time efficient, since in this scenario the 
geodesy equations become more complex and require 
more computational time in the context of a single 
light beam.
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