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dynamic

Abstract. A tri-parametric family of two-point iterative methods with six-order convergence for solving 
nonlinear equations has been proposed. Each derivative-free method member of the family requires only three 
evaluations of the given function per iteration. It is optimal in the sense of the Kung and Traub conjecture. 
Based on these methods, with-memory methods with convergence orders of 6, 7, 7.53, and 8 are constructed. 
The parameters of the self-accelerator are calculated using Newton interpolation and information from the 
current and previous iterations. The proposed family has an efficiency index of 1.96 and 2. Numerical 
comparisons have been made to reveal the high efficiency of the developed method. The dynamical study of 
iterative schemes reflects a good overview of their stability, convergence properties, and graphical aspects by 
drawing attraction basins in the complex plane. Also, we have examined the dynamic behavior of new methods 
to select the best weight function that has the largest attraction basins for different polynomials.
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1 Introduction

Definition 1 In 1960, Ostrowski presented a 
measure called the efficiency index for comparing 
iterative methods. The efficiency index is still used to 
compare iterative methods. Its definition is as follows 
[1]

( ) ,fIE IM rθ
=                        (1)

where r and fθ are the R-order of convergence and the 
number of function evaluations per iteration, 
respectively.

Literature

Many problems from Engineering, Chemistry, 
Physics, and other fields can be obtained in the form 
of equations using Mathematical Modelling. The 
field of computational sciences offers a lot of 
possibilities to researchers to solve these problems 
and has seen notable growth in mathematics. We 

remark that in computational sciences, the practice of
numerical study for finding such solutions is 
essentially connected to variants of the iterative 
method. Iterative methods for finding the solutions of
nonlinear equations are the first purpose of the work. 
Fariborzi Araghi et al. [2] and Ullah et al. [3] have 
solved nonlinear equations using adaptive methods.

Existing iterative methods

Can attribute the first two-step without-memory 
method to Ostrowski. In 1960, he presented the 
family of optimal-methods as follows [1].
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In 1977, Hansen and Patrick [4] built an optimal 
third-order method as follows
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In 2003, Petkovic et al. [5] regained Hansen-
Patrick’s method by Laguerre’s method. Sharma et 
al. [6] suggested a two-point fourth-order family of 
iterative methods for solving nonlinear equations (p 
= 1/3, α = 1)

( )
( )

( )

( ) ( ) ( ) ( )

( )
( )1 1

2 2

, 0,1, 2, ,

( 1)
.

(( ) ( 1) )

k
k k

k

k k
k k

k
k k k k

f x
y x k

f x

f x f x
x x

f xf x f x f x f x

ρ

α

α α
+


= − = …


 + =


′′±

′

′
′ ′ − +




                      (4)

In 2015, Kansal et al. [12] proposed a fourth-order two-step method as follows:
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Kansal et al. [7] presented a new family of fourth-order methods based on the method (3) that they have 
obtained by Hansen-Patrick’s method. This method, which we will refer to as KKBM, is given by
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Some weight functions satisfy the condition of (6) are as follows:
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The two-step iterative method (6) has fourth-order satisfies (considering the weight functions mentioned 
in equation (7)) the following error equation:
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Motivation and organization
In this study, we convert Hansen-Patrick’s 

method into the optimal-method fourth-order. They 
have three free parameters. Also, we increase the 
convergence order from three to eight. The proposed 
methods use the information from all steps. The 
efficiency index of them is 2. The based Hansen-
Patrick method of the third-order has been presented 
in Section 2. In Section 3, we have converted the 
without-memory schemes into with-memory 
methods. Methods with 100% convergence order 
improvement in Section 4 have been developed for 
the first time using Hansen-Patrick’s method. This 

section presents the purpose of this paper by proving 
the original theorem. The presented multipoint 
methods are tested and compared with existing 
methods of the same order in Section 5. The 
dynamical behavior of the proposed methods is 
analyzed in Section 6. We finish the work with some 
remarks and conclusions

2 Derivation of the family of without memory 
methods

Based on Kansal et al.’s method [7], we have 
derived a general optimal family four order as follows:
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We have shown this method with TM4.
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Theorem 2.1 Let I ⊆ R be an open interval, f : I 
→ R be a scalar function which has a simple root ζ
in the open-interval I, and also the initial 

approximation x0 is sufficiently close to the simple 
zero, then, the two-step iterative method (9) has four-
order satisfies the following error equation:
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Proof. Now, to check the convergence order of 
(9), we avoid retyping the widely practiced approach 
in the literature and put forward the following self-
explained Mathematica code:
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The expression of the asymptotic error of 
1 1  k ke x ζ+ += − can be presented as
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The family (9) will have the order of convergence 
equal to four if the coefficients A1, A2, and A3 in 
(13) all vanish. First, for A1, we have

A1 = Coefficient[ek+1, e]//Simplify
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This proof reveals that the two-step class of 
Hansen-Patrick’s method (9) reaches the order of 
convergence four by using only three functional 
evaluations per full iteration. Which completes the 
proof of the Theorem 2.1. 

3 With Memory Methods

In this section, we first have proposed with-
memory methods which, we have based on the 
without-memory-method mentioned in Equation (9).
We have advanced the convergence rate of the 
methods (9) by varying the parameters per full 
iteration. With the choice 
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( )''f ζ and ( )'''f ζ are not available in practice. But 

we could approximate the parameters ,γ λ , and β
by ,k kγ λ , and kβ . The exact value of a simple root 
is not known, and consequently, the derivatives of the 

function cannot compute. We have used information
available from the current and prior iteration and 
have obtained the parameters ,k kγ λ , and kβ
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Hence, we use Newton’s interpolation method to 
approximate the derivatives of f, where 

( ) ( ) ( )3 4 5;k k kN x N w and N y are Newton’s 
interpolation polynomials of degrees three, four, and 
five respectively. In this work, we have proposed the 
families of with-memory methods as follows.

(i) If we only interpolate parameter kγ using 
Newton’s method, a procedure by six order with-
memory method will obtain.

( )
( )
( )

( )
[ ] ( ) ( )

( )
[ ] ( ) ( ) ( )

( )

'
3

1 1
2

1 , 1, 2,3,...,

1(0) 1, '(0) , ''(0) , , 0,1, 2, ,
2

, ,

( 1)( 1 ) ( .
2( 1)( (1 )

,

)
, )

k
k

k
k

k

k
k k k k k

k k k

k
k k k

kk k k k k k k

k

k

k
N x

f y
H H H t k

f x

f x
y x z x f x

f x z f z

f x
x y H t

f yf y z f z y x y z
f x

γ

γ

α

λ

α
αλ β

α
+

− = =

 +

= = − < ∞ = = …

 = −
+

+
= − +

−+ +
± −

= +

−
− −













(15)

(ii) We attempt to prove that the method with memory (9) has convergence seven-order provided that we 
use accelerators ,k kγ λ .
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(iii) Replacing the fixed parameters γ, λ, and 
β in the iterative formula (9) by the varying ,k kγ λ ,

and kβ calculated by (14), the following derivative-
free two-points scheme with memory has achieved:
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Theorem 3.1 If an initial approximation x0 is 
sufficiently close to the zero ζ of f(x) = 0 and the 

parameter kγ in the iterative scheme (15) is 
recursively calculated by lemma in (3.1), then the R-
order of convergence is at least 6.
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Theorem 3.2 If an initial approximation x0 is 
sufficiently close to the zero ζ of f(x) = 0 and the 
parameter ,k kγ λ in the iterative scheme (16) is 
recursively calculated by lemma in (3.2), then the R-
order of convergence is at least 7.

Proof The proof of this Theorem has been fully 
described in reference [7].
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The proof is very similar to the ones given 
previously in Torkashvand-Kazemi. [8].

Theorem 3.3 If an initial approximation x0 is 
sufficiently close to the zero ζ of f(x) = 0 and the 
parameter , ,k k kγ λ β in the iterative scheme (17) is 
recursively calculated by lemma in (3.3), then the R-
order of convergence is at least 7.53.

Proof First, we assume that the R−order of 

convergence of sequence , ,k k kx w y is at least m, m1,
and m2, respectively. Hence,
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By (21), and lemma (3.3), we obtain
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(22)

On the other hand, we get
( ), (1 + ' )k w kke f eζγ (23)

( ), 2(1 + ~ ' )( )k y k k ke f c eγ ζ λ + (24)
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Combining (22)-(23), (22)-(24), and (22)-(25), 
we conclude
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               (26)

Equating the powers of error exponents of 1ke −

in pairs of relations (21), and (26), we have

2
1 2

1 1 2

2 1 2

4(1 ) 4 0,
(1 ) 0,

2(1 ) 2 0.

m m m m
mm m m m

mm m m m

 − + + − =
 − + + − =
 − + + − =

(27)

This system has the solution 

1 2
1 1(7 65) 1.88, (7 65) 3.77,
8 4

1 (7 65) 7.53,
2

m m

and m

= + ≈ = + ≈

= + ≈
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which specifies the R−order of convergence of the 
derivative-free scheme with memory (15). So, the 
proof of Theorem 3.2 ends. □

3.1 Maximum improvement in convergence 
order

This part deals with the main contribution of this 
manuscript. In this work, we will use the idea of 
adaptive methods. This technique uses all previous 

and current information and increases the degree of 
convergence and efficiency index by one hundred 
percent. Thus, as iterations proceed, the degree of 
interpolation polynomials increases, and the best-
updated approximations for computing the self-
accelerator , ,k k kγ λ β are obtained. We have
extended the following recursive adaptive method 
with memory. Then
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(28)

In what follows, we discuss the general 
convergence analysis of the recursive adaptive
method with memory (28). It notes that the 
convergence order varies as the iteration goes ahead. 
First, we need the following lemma.
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Main Theorem Let x0 be a suitable-initial guess 
to the simple root ζ of f(x) =0. Also, suppose the 
initial values 0 0 0, ,γ λ β are chosen appropriately. 

Then, the R-order of the recursive adaptive method 
with memory (28) can obtain from the following 
system of nonlinear equations:
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2 3 1
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                              (30)

where 1 2,m m and m are the order of convergence 
of the sequences { },{ } { }k k kx w and y respectively.

Proof Let { },{ } { }k k kx w and y be convergent 
with orders 1 2,m m and m , respectively. Then
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Now, by Lemma (3.4) and Eq (31), we obtain
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Similarly, we get 
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By considering the errors of wk, yk, and xk+1 in Eq. (31), and Eqs. (32)-(34), we conclude:
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To obtain the desired result, it is enough to match the right-hand-side of the Eqs. (31), (35), (36), and (37). 
Then
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Therefore, this completes the proof of the 
Theorem. □

Remark 3.1 For k = 4, we get the convergence 
order m1 ≃ 2 m2 ≃ 4 and m ≃ 8 (been shown by 
TM8). In this instance, the efficiency index is 

1
38 2= which confirms that our proposed method 

competes for the whole of the present methods with-
memory.

4 Numerical results and comparisons

In this section, we will check the effectiveness of 
the new optimal methods. We employ the present 
methods 2, 3, 4, 5, 6, 15, 16, 17, 36 (k=1) and 36
(k=4) denoted by OM, HPM, SGSM, KKBM4, 
KKBM7,TM6, TM7, TM7.5, and TM8, respectively, 
also to solve nonlinear equations given in Table 1.

The values of real parameters used for numerical 
calculations are suggested by authors of the original 

papers ( 1α = for HPM; 
11,
3

α ρ= = for SGSM;

1, 0α β= = for KKBM4, 1,α = 0 0 0.1γ λ= =
for KKBM7; 0 0 01, 0.1α γ λ β= = = = for TM6, 
TM7, TM7.5, and TM8). All computations are 
performed using the programming package 
Mathematica with multiple-precision arithmetic.
Tables 2 − 5 also include, for each test function, the 
initial estimation values and the last value of the
computational order of convergence rc computed by 
the expression

( ) ( )
( ) ( )

1

1 2

 /
 /

n n
c

n n

log f x f x
r

log f x f x
−

− −

≈

Table 1 lists the exact-roots ζ and initial 
approximations x0.Tables 2−5 show that the proposed 
methods compete with the previous methods. TM7.5 
and TM8 have efficiency indices of 
3 37.53 1.96, 8 2= = .

Table 1 – Test functions

Table 2 – Numerical results

Nonlinear function Zero Initial guess

( ) ( ) 21 x xcosx
1f x xlog 1 xsinx e sinπx− + += + + 0ζ = 0 0.5x =

( ) 2x
2

2f x e -1x− += 1ζ = − 0 0.8x = −

( ) 33 2
3

xf x -cos(x -1)+ +1x xe x− += 1ζ = − 0 1.5x = −

functions OM HPM, α = 1 SGSM, β =
1/3,α = 1

KKBM7,
H1(t),α = 1 TM7.5, H1(t)

f1,x0 = 0.5 |xn+1 − xn| 5.53e-146 5.71e-33 1.12e-22 3.13e-849 3.05e-1089
|f(xn+1)| 3.03e-582 1.55e-97 1.93e-88 2.21e-5938 4.04e-8199

Iter 4 4 3 3 3
rc 4.00 3.00 4.00 7.00 7.53

f2,x0 = −0.8 |xn+1 − xn| 2.79e-48 1.86e-25 3.04e-52 4.47e-747 6.56e-973
|f(xn+1)| 1.84e-190 9.72e-75 1.67e-206 2.03e-5225 5.45e-7324

Iter 3 4 3 3 3
rc 4.00 3.00 4.00 7.00 7.53

f3,x0 = −1.5 |xn+1 − xn| 1.25e-44 9.11e-13 3.09e-29 5.93e-1058 2.52e-1459
|f(xn+1)| 5.45e-176 3.53e-36 1.40e-114 8.86e-7402 3.92e-10987

Iter 3 3 3 3 3
rc 4.00 3.00 4.00 7.00 7.53
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Table 3 – Numerical results

functions TM8, H8(t) KKBM4 TM7, H1(t) TM6, H1(t) TM8, H12(t)
f1,x0 = 0.5 |xn+1 − xn| 7.02e-1038 4.63e-35 3.13e-849 9.66e-1218 7.02e-1038

|f(xn+1)| 1.21e-8297 3.82e-135 2.21e-5939 4.54e-720 1.21e-8297
Iter 4 3 3 3 4
rc 8.00 4.00 7.00 6.00 8.00

f2,x0 = −0.8 |xn+1 − xn| 2.47e-940 1.91e-54 4.47e-747 1.37e-1484 4.21e-943
|f(xn+1)| 3.91e-7517 2.34e-215 2.03e-5225 3.94e-8906 2.77e-7539

Iter 4 3 3 3 4
rc 8.00 4.00 7.00 6.00 8.00

f3,x0 = −1.5 |xn+1 − xn| 4.00e-1385 3.26e-45 5.93e-1058 1.48e-157 4.79e-1385
|f(xn+1)| 1.41e-11075 2.10e-178 8.86e-7402 1.65e-961 4.98e-11075

Iter 4 3 3 3 4
rc 7.99 4.00 7.00 6.00 7.99

Table 4 – Numerical results

functions TM7.5, H7(t) TM7.5, H8(t) TM8, H4(t) TM8, H6(t) TM8, H7(t)
f1,x0 = 0.5 |xn+1 − xn| 2.92e-1089 3.05e-1089 8.18e-1038 7.02e-1038 6.75e-1038

|f(xn+1)| 2.90e-8199 4.03e-8199 4.12e-8297 1.21e-8297 8.85e-8298
Iter 3 3 4 4 4
rc 7.53 7.53 8.00 8.00 8.00

f2,x0 = −0.8 |xn+1 − xn| 3.76e-1014 9.08e-976 5.36e-852 1.82e-932 3.74e-977
|f(xn+1)| 1.50e-7634 1.61e-7345 1.93e-6810 3.52e-7454 1.09e-7811

Iter 3 4 4 4 4
rc 7.53 7.53 8.00 8.00 8.00

f3,x0 = −1.5 |xn+1 − xn| 3.05e-1459 1.66e-1320 2.33e-1385 2.33e-1385 2.83e-1393
|f(xn+1)| 1.68e-10986 7.51e-10560 1.37e-10851 1.87e-11077 9.35e-11141

Iter 3 3 4 4 4
rc 7.53 7.53 7.99 7.99 7.99

Table 5 – Comparison improvement of convergence order the proposed method with other schemes

with-memory methods number of steps optimal order COC percentage increase
CPJM[5] 2 4 5 25%

CLBTM[6] 2 4 7 75%
KKBM7[7] 2 4 7 75%

TKM[8] 2 4 7 75%
LSNKKM[9] 2 4 6 50%
LSMKKM[9] 2 8 12 50%
MWBM[10] 2 2 2.73 36.6%
MLAM[11] 2 4 5.95 48.75%

WM[12] 2 4 4.44 11.24%
TM6(15) 2 4 6 50%
TM7(16) 2 4 7 75%

TM7.5(17) 2 4 7.53 88.34%
TM8(28) 2 4 8 100%
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Remark 4.1 As can be understood that the 
advancement in the convergence order from (100% 
of a development). It denotes the extremely high 
computational efficiency of our proposed methods. 
Hence, the efficiency index of the proposed method 

(28) is 
1
38 2= .

As observed, the efficiency index of the proposed 
method is much higher than the method similar 
methods of Hansen-Patrick [13, 14,15].

5 Complex dynamics

In this section, we have examined the dynamic 
behaviors of the new with-memory method. For this 
purpose, we have assigned different values to the 
self-accelerating parameters and have used the 

weighted function 1( ) 1-
2k kH t t= in the TM4 to 

select the most efficient one. Some significant results 
concerning the dynamic performances of the iterative 
methods have been obtained in [16,17,18]. We have 
compared with-memory methods (TM4) by using the 
basins of attraction for three complex polynomials

( ) ( )
( ) ( )

2 3
1 2

3 4
3 4

  1,    1,  

  ,    1

p z z p z z

p z z z p z z

= − = −

= − = −
. We have used 

similar material as in [18] to generate the basins of 
attraction. To produce the basins of attraction for the 
zeros of a polynomial and an iterative method, we use 
a framework of 500×500 points in a rectangle D = [
−5, 5]×[−5, 5] ⊂ C, and we use these points as z0.
Whenever the sequence produced by the iterative 
method achieves a zero z∗ of polynomial pi(x), then 
we take with a tolerance |z − z∗| < 10−6 and a 
maximum of 25 iterations. Therefore, we determine 
that z0 is in the basin of attraction of the zero and we 
paint this point in a color previously selected for this 
root. Figures 1, 2, 3, 4 and 5 show the basins of the 
attraction proposed method (TM4). Figures show that
the accelerator parameter plays a decisive role in 
increasing the absorption domain of a repetitive 
method. As can be seen from Figures the smaller the 
size of the self-accelerator parameters, the greater the 
stability savings. In Figures (a)1, and (a)3, we have 
considered the number of points to be 50. As can be 
observed, the percentage of transparency with other 
shapes, which is 500 points, is much lower. 

Figure 1 – Finding the roots of the polynomial ( ) 2
1   1p z z= −  
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Figure 2 – Finding the roots of the polynomial ( ) 2
1   1p z z= −

Figure 3 – Finding the roots of the polynomial ( ) 3
2   1p z z= −

Figure 4 – Finding the roots of the polynomial ( ) 3
2   1p z z= −  
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Figure 5 – Finding the roots of the polynomial ( ) 3
3p z z z= −

In the following, we have drawn the absorption area of the Hansen-Patrick’s method in two separate parts. 
The first part (a) is related to the HPM1 method,
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and we have considered the second part as the HPM2 method.
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Figure 6 – Finding the roots of the polynomial ( ) 2
1   1p z z= −  
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Figure 7 – Finding the roots of the polynomial ( ) 2
1   1p z z= −

Figure 8 – Finding the roots of the polynomial ( ) 3
3p z z z= −

At the end of this section, we have compared the 
attraction basin of the proposed methods with one-
step methods Newton (NM), Steffensen (SM) and 
Abbasbandy’s method (AM) [19]. The dynamical 
behavior two-step Kung-Traub’s method (KTM) 

[20], Fomtini-Sormani’s method (FSM) [21] and 
Maheshwari’s method (MM) [22] are given. Also, 
the dynamical planes were obtained through 
three steps of Chun-Lee's methods (CLM) 
[23].
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Figure 9 – Finding the roots of the polynomial ( ) 2
1   1p z z= −

Figure 10 – Finding the roots of the polynomial ( ) 3
2   1p z z= −
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Figure 11 – Finding the roots of the polynomial  ( ) 3
3p z z z= −

Figure 12 – Finding the roots of the polynomial ( ) 4
4   1p z z= −



92 An eighth-order two-step with-memory adaptive method base on Hansen-Patrick’s method and its dynamic

Int. j. math. phys. (Online)                                       International Journal of Mathematics and Physics 15, №2 (2024)

6 Conclusion

This third-parametric Hansen-Patrick’s family 
does not need any derivative. The convergence orders 
of the new derivative-free methods with memory 
have increased from 4 to 6, 7, 7.53, 7.94, 7.99, and 8. 
We were able to improve the convergence order of 
optimal two-step methods up to 100% without any 
additional functional evaluations. The efficiency 
index of the proposed adaptive family with memory 
is 3 8 2= , which is much better than that of optimal 
methods without memory, and all the methods 
mentioned in the references [24, 25, 26,27,28,29,30]. 

Comparison improvement of convergence order of 
the proposed method with other schemes is presented 
in Table 5 They perform better than the other well-
organized efficient iterative methods in all the
considered problems. The proposed iterative methods 
not only have a higher order of convergence but also 
a stable behavior in the complex plane, with global 
convergence to the simple roots in many cases or 
wide areas of convergence in the rest of them. In
addition, our methods have not only minimum 
residual error corresponding to considered test 
function f but also have smaller error differences 
between two consecutive iterations.
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