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Abstract. In this paper, the influence of an additive white noise forcing term on the numerical solution for 
a class of deterministic nonlinear one-dimensional Schrödinger equations with mixed concave convex was 
studied, sub-super nonlinearities, that is, the stationary states and the blowing-up solutions. Such a 
perturbation occurs when the size of the noise, described by the real-value parameter 𝜀𝜀𝜀𝜀 is positive. The size 
of the noise is controlled by the parameter 𝜀𝜀𝜀𝜀 > 0. We also proved that as 𝜀𝜀𝜀𝜀 approaches zero, the solution of 
the perturbed problem converges to the unique trajectory of the deterministic equation, which is the solitary 
wave. The stochastic model appears to be more realistic, and one can observe, for small values of 𝜀𝜀𝜀𝜀, a
similar evolution phenomena about the solution as that given by the deterministic case. However, an 
explosion of the solution and a blow-up phenomena can be noted as 𝜀𝜀𝜀𝜀 becomes bigger.
Key words: Nonlinear Schrödinger equation, Mixed nonlinearity, Blow-up phenomena, Finite difference 
scheme, White noise, Solvability.

1. Introduction

In this work, we are interested in the study of the 
one-dimensional stochastic nonlinear Schrödinger 

(NLS) equation with both subcritical and supercriti-
cal power nonlinearities in the presence of an additive 
noise. The resulting equation is a random perturb-
bation of the dynamical system of the following form

⎩
⎪
⎨

⎪
⎧

 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 + 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼 (𝑖𝑖𝑖𝑖) + 𝑓𝑓𝑓𝑓𝜀𝜀𝜀𝜀(𝑖𝑖𝑖𝑖) = 0, 𝑡𝑡𝑡𝑡 ≥ 0, 𝐿𝐿𝐿𝐿2 ≥ 𝑥𝑥𝑥𝑥 ≥ 𝐿𝐿𝐿𝐿1,
 

 𝑖𝑖𝑖𝑖(0, 𝑥𝑥𝑥𝑥) = 𝑖𝑖𝑖𝑖0(𝑥𝑥𝑥𝑥), 𝐿𝐿𝐿𝐿1 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝐿𝐿𝐿𝐿2,
 

 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡, 𝐿𝐿𝐿𝐿1) = 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡, 𝐿𝐿𝐿𝐿2) = 0, 𝑡𝑡𝑡𝑡 ≥ 0,

                                          (1)

where 𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡, 𝑥𝑥𝑥𝑥) is a complex-valued function 
defined for 𝑡𝑡𝑡𝑡 ≥ 0 and 𝑥𝑥𝑥𝑥 ∈ ℝ, 𝛼𝛼𝛼𝛼 is a positive real 
parameter, 𝐿𝐿𝐿𝐿1 and 𝐿𝐿𝐿𝐿2 are reals such that 𝐿𝐿𝐿𝐿1 < 𝐿𝐿𝐿𝐿2, 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
is the derivative of 𝑖𝑖𝑖𝑖 with respect to the time t and 
 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is its second derivative wiht respect to the 
position 𝑥𝑥𝑥𝑥. The function 𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼 is defined by

𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼 (𝑖𝑖𝑖𝑖) = |𝑖𝑖𝑖𝑖|𝑝𝑝𝑝𝑝−1𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼|𝑖𝑖𝑖𝑖|𝑞𝑞𝑞𝑞−1𝑖𝑖𝑖𝑖.

The term 𝑓𝑓𝑓𝑓𝜀𝜀𝜀𝜀(𝑖𝑖𝑖𝑖) includes the stochastic 
contribution. In our case, we are concerned with an 
additive noise. This means that it will be considered 
to be real-valued, Gaussian, white in time and either

white or correlated in space. As an immediate 
consequence, the noise does not depend on the 
solution. The size of the noise is controlled by the 
parameter 𝜀𝜀𝜀𝜀 > 0.

The deterministic equation occurs as a basic 
model in many areas of physics, hydrodynamics, 
plasma physics, nonlinear optics, molecular biology. 
It describes the propagation of waves in media with 
both nonlinear and dispersive responses. It took the 
interest of some researchers like Ben Mabrouk et al. 
[3], Bratsos [4], Keraani [12] and Sulem and Sulem
[15]. It is an idealized model and does not take into 
account many aspects such as in-homogeneities, high 
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order terms, thermal fluctuations and external forces, 
which may be modeled as random excitations like it 
was the case in the works of Cheung and Mosincat
[5], Falkovich et al. [9], Farlano et al. [10] and Oh et 
al. [13].

Here, we particularly treat the influence of a noise 
acting as a potential on the behavior of the 
deterministic solution. Such effects on solitary waves 
have already been studied for the NLS equation and 
for also for the Korteweg-de-Vries equation (see, for 
example, Printems [14]). This kind of noise has been 
considered by Garnier in [11], where the paths were
smooth functions and the nonlinearity was
subcritical. In the case of a white noise, this type of 
model has been introduced in the context of crystals
by Bang et al. [1]. It is expected that such a noise has 
a strong influence on the solutions which blow-up. It 
may delay or even prevent the formation of a 
singularity. It has been shown in [6], by Debussche 
and Di Menza, via numerical simulations, that this is 
the case for a very irregular noise: for a space-time 
white noise. However, in the supercritical case and 
for a noise which is correlated in space but non 
degenerate, it has been observed, on the contrary, that
any solution seems to blow-up in a finite time. We 
recall that in the deterministic case, only a restricted 
class of solutions blow-up. 

The case of an additive noise has been considered 
in [7] by De Bouard and Debussche. It has been 
proved that for any initial data, blow-up occurs in the 
sense that, for arbitrary 𝑡𝑡𝑡𝑡 > 0, the probability that the 
solution blows up before the time t is strictly positive. 
Thus, the noise strongly influences this blow-up
phenomenon. In the present paper, the result is in 
perfect agreement with the numerical simulations. It 
represents, between others, a generalization of the 
results established by Ben Mabrouk et al. in [3] and 
by Debussche and Di Menza in [6].

The paper is organized as follows: In Section 2, 
we give a precise mathematical definition of the 
additive white noise and transform the continuous 
problem (1) to a discrete algebraic one. Then, we 
study the solvability of the difference scheme. The
next section is devoted to the convergence of this 
scheme. Some numerical implementations are given 
in section 5 to validate the scheme. The paper is 
ended by a recapitulative conclusion. 

2. Discretization of the stochastic 
Schrödinger equation

In this section, we start by giving a mathematical 
definition for an additive white noise. We follow the 
approach taken by Debussche and DiMenza in [6]. 
We consider a probability space (𝛺𝛺𝛺𝛺,ℱ, P), endowed 
with a filtration �ℱ(𝑡𝑡𝑡𝑡)�𝑡𝑡𝑡𝑡≥0. We also consider a
cylindrical Wiener process �𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡)�𝑡𝑡𝑡𝑡≥0 on 𝐿𝐿𝐿𝐿2(ℝ),
which is adapted to this filtration. Then, we have

𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡, 𝑥𝑥𝑥𝑥,𝑤𝑤𝑤𝑤) = �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡,𝑤𝑤𝑤𝑤)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥) ,
∞

𝑖𝑖𝑖𝑖=0

where (𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈ℕ is an orthogonal basis of 𝐿𝐿𝐿𝐿2(ℝ) and 
(𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈ℕ a sequence of independent real valued 
Brownian motions on ℝ+, associated to �ℱ(𝑡𝑡𝑡𝑡)�𝑡𝑡𝑡𝑡≥0.
The white noise is the time derivative of 𝑊𝑊𝑊𝑊. This 
makes that the stochastic forcing term will be written 
in the following form

𝑓𝑓𝑓𝑓𝜀𝜀𝜀𝜀(𝑖𝑖𝑖𝑖) =  𝜀𝜀𝜀𝜀�̇�𝜒𝜒𝜒 =
𝜕𝜕𝜕𝜕𝑊𝑊𝑊𝑊
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

 .

More details and generalizations of these 
notations can be found in [] and the references 
therein. Taking in account these notations, we then 
rewrite the first equation in (1) as follows

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 + 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼 (𝑖𝑖𝑖𝑖) =  𝜀𝜀𝜀𝜀�̇�𝜒𝜒𝜒, 𝑡𝑡𝑡𝑡 ≥ 0, 𝐿𝐿𝐿𝐿2 ≥ 𝑥𝑥𝑥𝑥 ≥ 𝐿𝐿𝐿𝐿1

Now, we are in position to establish the finite 
difference scheme corresponding to the problem (1). 
We consider a time step 𝑙𝑙𝑙𝑙 = ∆𝑡𝑡𝑡𝑡 and denote the time 
discretization by

𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙 =k (𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1 − 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘).

We fix an integer M and consider, a space step

ℎ = ∆𝑥𝑥𝑥𝑥 =
𝐿𝐿𝐿𝐿2 − 𝐿𝐿𝐿𝐿1
𝑀𝑀𝑀𝑀 + 1

 .

Then, we subdivide the interval [𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2] into 
subintervals [𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚, 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚+1], where
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𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚 = 𝐿𝐿𝐿𝐿0 + 𝑚𝑚𝑚𝑚ℎ,𝑚𝑚𝑚𝑚 ∈ {0, … ,𝑀𝑀𝑀𝑀 + 1}

This allows to consider the space grid

Ωℎ = �𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚 = 𝐿𝐿𝐿𝐿0 + 𝑚𝑚𝑚𝑚ℎ,𝑚𝑚𝑚𝑚 ∈ {0, … ,𝑀𝑀𝑀𝑀 + 1}�, 

We, also, consider the space 𝑊𝑊𝑊𝑊ℎ of functions 
defined on Ωℎ, and vanishing at zero. It is endowed 
with the inner product, defined for any given vectors 

𝑈𝑈𝑈𝑈 = (𝑈𝑈𝑈𝑈0,𝑈𝑈𝑈𝑈1, … ,𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀+1)𝑡𝑡𝑡𝑡 and 𝑉𝑉𝑉𝑉 =
(𝑉𝑉𝑉𝑉0,𝑉𝑉𝑉𝑉1, … ,𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀+1)𝑡𝑡𝑡𝑡

of ℝ𝑀𝑀𝑀𝑀+2 , by

< 𝑈𝑈𝑈𝑈,𝑉𝑉𝑉𝑉 >ℎ= ℎ � 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚 ,
𝑀𝑀𝑀𝑀+1

𝑚𝑚𝑚𝑚=0

and the associated 𝐿𝐿𝐿𝐿2-norm

||𝑈𝑈𝑈𝑈||ℎ,2 = (𝑈𝑈𝑈𝑈,𝑈𝑈𝑈𝑈)ℎ
1/2 = �ℎ � 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀+1

𝑀𝑀𝑀𝑀=0

�

1/2

.

We denote by 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 the approximation of 𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 , 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚)
and by 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 the numerical solution. We introduce the 
following notations

𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 𝑈𝑈𝑈𝑈 =
𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘+1 − 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘−1

2𝑙𝑙𝑙𝑙
, 

∆𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 𝑈𝑈𝑈𝑈 =
𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚+1
𝑘𝑘𝑘𝑘 − 2𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 + 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚−1

𝑘𝑘𝑘𝑘

ℎ2
,

(𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡)𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 = 𝜆𝜆𝜆𝜆𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚−1
𝑘𝑘𝑘𝑘 𝑈𝑈𝑈𝑈 + (1 − 2𝜆𝜆𝜆𝜆)𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 𝑈𝑈𝑈𝑈 + 𝜆𝜆𝜆𝜆𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚+1

𝑘𝑘𝑘𝑘 𝑈𝑈𝑈𝑈,

(𝑈𝑈𝑈𝑈𝑥𝑥𝑥𝑥)𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 =
𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚+1
𝑘𝑘𝑘𝑘 − 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚−1

𝑘𝑘𝑘𝑘

2ℎ
,

(𝑈𝑈𝑈𝑈𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 = 𝜇𝜇𝜇𝜇∆𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘+1𝑈𝑈𝑈𝑈 + (1 − 2𝜇𝜇𝜇𝜇)∆𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 𝑈𝑈𝑈𝑈 + 𝜇𝜇𝜇𝜇∆𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘−1𝑈𝑈𝑈𝑈.

We then discretize the problem (1) as follows

𝑖𝑖𝑖𝑖(𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡)𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 + (𝑈𝑈𝑈𝑈𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 + 𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼 �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 � =

=  𝜀𝜀𝜀𝜀𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘+12, m = 0, …, M+1.

Since we treat an additive noise, we have

𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘+12 = 1

𝑙𝑙𝑙𝑙√ℎ
�𝛽𝛽𝛽𝛽𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) − 𝛽𝛽𝛽𝛽𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)�,

m = 1, …, M,

𝑓𝑓𝑓𝑓0
𝑘𝑘𝑘𝑘+12 =

√2
𝑙𝑙𝑙𝑙√ℎ

�𝛽𝛽𝛽𝛽0(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) − 𝛽𝛽𝛽𝛽0(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)�, 

𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀+1
𝑘𝑘𝑘𝑘+12 =

√2
𝑙𝑙𝑙𝑙√ℎ

�𝛽𝛽𝛽𝛽𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) − 𝛽𝛽𝛽𝛽𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)�. 

Moreover, as the random variables 

1
𝑙𝑙𝑙𝑙
�𝛽𝛽𝛽𝛽𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘+1) − 𝛽𝛽𝛽𝛽𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)�, k ≥ 0, m = 0, …, M+1

are independent with normal law 𝒩𝒩𝒩𝒩 (0,1), we can 
choose the

�𝜒𝜒𝜒𝜒𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘+12�, k ≥ 0, m = 0, …, M+1

to be a sequence of independent random variables 
with normal law 𝒩𝒩𝒩𝒩 (0, 1). The numerical problem is 
considered under the initial data

⎩
⎪
⎨

⎪
⎧ 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚0 = 𝑖𝑖𝑖𝑖(0, 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚) = 𝑖𝑖𝑖𝑖0(𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚), 0 ≤ 𝑚𝑚𝑚𝑚 ≤ 𝑀𝑀𝑀𝑀 + 1,

 
𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚1 = 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚0 + 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 �𝑖𝑖𝑖𝑖0′′(𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚) + 𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼 �𝑖𝑖𝑖𝑖0(𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚)�� , 0 ≤ 𝑚𝑚𝑚𝑚 ≤ 𝑀𝑀𝑀𝑀 + 1,

 
𝑈𝑈𝑈𝑈1𝑘𝑘𝑘𝑘 = 𝑈𝑈𝑈𝑈0𝑘𝑘𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘 = 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀+1𝑘𝑘𝑘𝑘  , 𝑘𝑘𝑘𝑘 ≥  0.

                                 (2)

We consider the approximation

ℎ𝛼𝛼𝛼𝛼 �𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 � = �𝑣𝑣𝑣𝑣1𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 + (1 − 𝑣𝑣𝑣𝑣1)𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘−1�ℎ�𝛼𝛼𝛼𝛼 ,
𝑣𝑣𝑣𝑣1 ∈ [0,1],

where

ℎ�𝛼𝛼𝛼𝛼 = max
0≤𝑚𝑚𝑚𝑚≤𝑀𝑀𝑀𝑀+1

{|𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚0 |𝑝𝑝𝑝𝑝−1 + 𝛼𝛼𝛼𝛼 |𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚0 |𝑞𝑞𝑞𝑞−1}.



7Chouhaïd Souissi et al.

International Journal of Mathematics and Physics 15, №1 (2024)                                         Int. j. math. phys. (Online)

Next, we denote by 𝜎𝜎𝜎𝜎 the report

𝜎𝜎𝜎𝜎 =
𝑙𝑙𝑙𝑙
ℎ2

and take the following notations,

𝑎𝑎𝑎𝑎1 = 2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆, 

𝑎𝑎𝑎𝑎2 = −4𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + (1 − 2𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖,

𝑏𝑏𝑏𝑏1 = −2𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇), 

𝑏𝑏𝑏𝑏2 = 4𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇) − 2𝑣𝑣𝑣𝑣1𝑙𝑙𝑙𝑙 ℎ�𝛼𝛼𝛼𝛼 ,

𝑐𝑐𝑐𝑐1 = −2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,

𝑐𝑐𝑐𝑐2 = 4𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖(1 − 2𝜆𝜆𝜆𝜆) − 2(1 − 𝑣𝑣𝑣𝑣1) 𝑙𝑙𝑙𝑙 ℎ�𝛼𝛼𝛼𝛼 ,

This leads, for 1 ≤ 𝑚𝑚𝑚𝑚 ≤ 𝑀𝑀𝑀𝑀, to

𝑎𝑎𝑎𝑎1(𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚−1
𝑘𝑘𝑘𝑘+1 + 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚+1

𝑘𝑘𝑘𝑘+1 ) + 𝑎𝑎𝑎𝑎2𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘+1 =

= 𝑏𝑏𝑏𝑏1 (𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚−1
𝑘𝑘𝑘𝑘 + 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚+1

𝑘𝑘𝑘𝑘 ) + 𝑏𝑏𝑏𝑏2𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 +

+𝑐𝑐𝑐𝑐1(𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚−1
𝑘𝑘𝑘𝑘−1 + 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚+1

𝑘𝑘𝑘𝑘−1 ) + 𝑐𝑐𝑐𝑐2𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘−1 + 𝜀𝜀𝜀𝜀𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘+12       (3)

The boundary conditions are expressed as 
follows

(𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2) 𝑈𝑈𝑈𝑈0𝑘𝑘𝑘𝑘+1 + 𝑎𝑎𝑎𝑎1𝑈𝑈𝑈𝑈1𝑘𝑘𝑘𝑘+1 =

= (𝑏𝑏𝑏𝑏1 + 𝑏𝑏𝑏𝑏2) 𝑈𝑈𝑈𝑈0𝑘𝑘𝑘𝑘 + 𝑏𝑏𝑏𝑏1𝑈𝑈𝑈𝑈1𝑘𝑘𝑘𝑘 +

+(𝑐𝑐𝑐𝑐1 + 𝑐𝑐𝑐𝑐2) 𝑈𝑈𝑈𝑈0𝑘𝑘𝑘𝑘−1 + 𝑐𝑐𝑐𝑐1𝑈𝑈𝑈𝑈1𝑘𝑘𝑘𝑘−1 + 𝜀𝜀𝜀𝜀𝑓𝑓𝑓𝑓0
𝑘𝑘𝑘𝑘+12          (4)

and
𝑎𝑎𝑎𝑎1 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀−1𝑘𝑘𝑘𝑘+1 + (𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2) 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘+1 =

= 𝑏𝑏𝑏𝑏1 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀−1𝑘𝑘𝑘𝑘+1 + (𝑏𝑏𝑏𝑏1 + 𝑏𝑏𝑏𝑏2) 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘+1 +

+𝑐𝑐𝑐𝑐1 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀−1𝑘𝑘𝑘𝑘+1 + (𝑐𝑐𝑐𝑐1 + 𝑐𝑐𝑐𝑐2) 𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘+1 + 𝜀𝜀𝜀𝜀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀+1
𝑘𝑘𝑘𝑘+12.         (5)

3. Solvability of the difference scheme

To prove the solvability of the dufference 
scheme, we need to write the problem (3)-(5) in its 
matrix form, i.e.,

𝐴𝐴𝐴𝐴𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘+1 = 𝐵𝐵𝐵𝐵𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘 + 𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘−1 + 𝐹𝐹𝐹𝐹,              (6)

where 𝐴𝐴𝐴𝐴 is the (𝑁𝑁𝑁𝑁 + 2)2-matrix defined as follows

𝐴𝐴𝐴𝐴 =

⎝

⎜⎜
⎛

𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2  𝑎𝑎𝑎𝑎1 0  ⋯  ⋯  0 
 𝑎𝑎𝑎𝑎1  𝑎𝑎𝑎𝑎2  𝑎𝑎𝑎𝑎1  ⋱ ⋱  ⋮

 0 ⋱ ⋱  ⋱ ⋱  ⋮
 

 ⋮ ⋱ ⋱ ⋱ ⋱  0 
 ⋮ ⋱ ⋱   𝑎𝑎𝑎𝑎1  𝑎𝑎𝑎𝑎2  𝑎𝑎𝑎𝑎1 

 0 ⋯  ⋯  0  𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2 ⎠

⎟⎟
⎞

.

𝐵𝐵𝐵𝐵 is also an (𝑀𝑀𝑀𝑀 + 2)2-matrix. It is obtained by 
replacing 𝑎𝑎𝑎𝑎1 and 𝑎𝑎𝑎𝑎2 respectively by  𝑏𝑏𝑏𝑏1 and 𝑏𝑏𝑏𝑏2 in the 
matrix 𝐴𝐴𝐴𝐴. Similarly, 𝐶𝐶𝐶𝐶 is the (𝑀𝑀𝑀𝑀 + 2)2-matrix 
obtained by replacing respectively 𝑎𝑎𝑎𝑎1 and 𝑎𝑎𝑎𝑎2 by 𝑏𝑏𝑏𝑏1
and 𝑏𝑏𝑏𝑏2 in 𝐴𝐴𝐴𝐴. Finally, the matrix F represents the white 
noise vector. It is expressed as follows

𝐹𝐹𝐹𝐹 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛𝑓𝑓𝑓𝑓0

𝑘𝑘𝑘𝑘+12

⋮

𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘+12

⋮

𝑓𝑓𝑓𝑓𝑁𝑁𝑁𝑁+1
𝑘𝑘𝑘𝑘+12⎠

⎟
⎟
⎟
⎟
⎟
⎞

.

The solvability of the difference scheme (3)-(5) 
is related to the determinant of the matrix A. This is 
based on a result developed by El-Mikkawy and 
Karawia in [8] and treating the invertibility of a 
general tri-diagonal matrix. We recall the basic result 
in what follows,

Lemma 1 [8] Consider the following real matrix 
A,

𝐸𝐸𝐸𝐸 =

⎝

⎜
⎜
⎛  

𝑎𝑎𝑎𝑎1  𝑦𝑦𝑦𝑦1 0  ⋯  ⋯  0 
 𝑧𝑧𝑧𝑧2  𝑎𝑎𝑎𝑎2  𝑦𝑦𝑦𝑦2  ⋱ ⋱  ⋮ 

0 ⋱ ⋱  ⋱ ⋱  ⋮ 
 ⋮ ⋱ ⋱ ⋱ ⋱  0 

 ⋮ ⋱ ⋱   𝑧𝑧𝑧𝑧𝑀𝑀𝑀𝑀−1  𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀−1  𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀−1 
 0 ⋯  ⋯  0   𝑧𝑧𝑧𝑧𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀 ⎠

⎟
⎟
⎞

and define the real vector

τ = (τ0, τ1, … , τn)t
as follows

𝜏𝜏𝜏𝜏𝑗𝑗𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧

1 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑗𝑗𝑗𝑗 = 0,
 

𝑎𝑎𝑎𝑎1 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑗𝑗𝑗𝑗 = 1,
 

 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝜏𝜏𝜏𝜏𝑗𝑗𝑗𝑗−1 − 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗−1𝜏𝜏𝜏𝜏𝑗𝑗𝑗𝑗−2 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑗𝑗𝑗𝑗 = 2, 3, … ,𝑎𝑎𝑎𝑎.

(7)
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Then, there holds

𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐸𝐸𝐸𝐸) = 𝜏𝜏𝜏𝜏𝑛𝑛𝑛𝑛.

Now, we are in position to state the main result of 
this section.

Theorem 1 The difference scheme (3)-(5) is 
uniquely solvable.

Proof Denote by 𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀+2(𝐴𝐴𝐴𝐴) the determinant of 
the matrix A. Then, we have the following recursive 
equation 

𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀+2(𝐴𝐴𝐴𝐴) −
−( 𝑎𝑎𝑎𝑎1 +  𝑎𝑎𝑎𝑎2) 𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀+1(𝐴𝐴𝐴𝐴) + 𝑎𝑎𝑎𝑎12 𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁𝑁𝑁(𝐴𝐴𝐴𝐴) = 0.

Thanks to Lemma 1, we deduce 𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀+2(𝐴𝐴𝐴𝐴) in 
three cases.

First case: 𝜇𝜇𝜇𝜇 = 0 and 𝜆𝜆𝜆𝜆 = 1
3
∶ Standard 

computations yield,

𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀+2(𝐴𝐴𝐴𝐴) = (𝑀𝑀𝑀𝑀 + 3) �
𝑖𝑖𝑖𝑖
3
�
𝑀𝑀𝑀𝑀+2

≠ 0.

Second case: 𝜇𝜇𝜇𝜇 = 0 and 𝜆𝜆𝜆𝜆 ≠ 1
3
. We denote by 

𝛿𝛿𝛿𝛿 = �1 − 2𝜆𝜆𝜆𝜆 − 3𝜆𝜆𝜆𝜆2,

𝑋𝑋𝑋𝑋1 =
𝑖𝑖𝑖𝑖
2

(1 − 𝜆𝜆𝜆𝜆 + 𝛿𝛿𝛿𝛿),

𝑋𝑋𝑋𝑋2 =
𝑖𝑖𝑖𝑖
2

(1 − 𝜆𝜆𝜆𝜆 − 𝛿𝛿𝛿𝛿),

𝐶𝐶𝐶𝐶1 = −
1 − 𝜆𝜆𝜆𝜆
𝛿𝛿𝛿𝛿

+
𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋2(−2 + 5𝜆𝜆𝜆𝜆 − 2𝜆𝜆𝜆𝜆2)

𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2
, 

𝐶𝐶𝐶𝐶2 = −
1 − 𝜆𝜆𝜆𝜆
𝛿𝛿𝛿𝛿

+
𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋1(−2 + 5𝜆𝜆𝜆𝜆 − 2𝜆𝜆𝜆𝜆2)

𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2
 . 

Then, we have

𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀+2(𝐴𝐴𝐴𝐴) = 𝐶𝐶𝐶𝐶1𝑋𝑋𝑋𝑋1𝑀𝑀𝑀𝑀+2 + 𝐶𝐶𝐶𝐶2𝑋𝑋𝑋𝑋2𝑀𝑀𝑀𝑀+2 ≠ 0 (8)
Third case: 𝜇𝜇𝜇𝜇 ≠ 0. We consider the following 

complex values,

𝛿𝛿𝛿𝛿 = �(𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2)2 − 4𝑎𝑎𝑎𝑎12,

𝑋𝑋𝑋𝑋1 =
1
2

(𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2 + 𝛿𝛿𝛿𝛿),

𝑋𝑋𝑋𝑋2 =
1
2

(𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2 − 𝛿𝛿𝛿𝛿).

Computations similar to the second case lead also 
to the equation (8).

It follows that the system (3)-(5) is uniquely 
solvable.

4. Convergence of the difference scheme

The main result of this section can be stated as 
follows, 

Theorem 2 Suppose that 𝑙𝑙𝑙𝑙 = 𝑜𝑜𝑜𝑜(ℎ2), is small 
enough. Then, the difference scheme (3)-(5) is 
convergent.

Proof We set,

𝑋𝑋𝑋𝑋 = 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑍𝑍𝑍𝑍 = 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 

𝜃𝜃𝜃𝜃 ∈ ℝ, 𝜓𝜓𝜓𝜓 ∈ ℂ,
and write

𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘𝑍𝑍𝑍𝑍𝑚𝑚𝑚𝑚,

k ≥ 0, m = 0, …, M+1.

By replacing, first in (3), we obtain, for k≥ 1 and
1 ≤ 𝑚𝑚𝑚𝑚 ≤ 𝑀𝑀𝑀𝑀,

𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘+1 + 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 +

+𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘−1 − 𝜀𝜀𝜀𝜀𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘+12 = 0,              (8)

where

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚(𝑍𝑍𝑍𝑍) = �(2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆)(1 + 𝑍𝑍𝑍𝑍2) + �−4𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖(1 − 2𝜆𝜆𝜆𝜆)� 𝑍𝑍𝑍𝑍� 𝑍𝑍𝑍𝑍𝑚𝑚𝑚𝑚−1,

 
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚(𝑍𝑍𝑍𝑍) = �−2𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇)(1 + 𝑍𝑍𝑍𝑍2) + �4𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇) − 2𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙ℎ�𝛼𝛼𝛼𝛼 �𝑍𝑍𝑍𝑍� 𝑍𝑍𝑍𝑍𝑚𝑚𝑚𝑚−1,

 
 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚(𝑍𝑍𝑍𝑍) = �(−2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆)(1 + 𝑍𝑍𝑍𝑍2) + �4𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖(1 − 2𝜆𝜆𝜆𝜆) − 2(1 − 𝑣𝑣𝑣𝑣1)𝑙𝑙𝑙𝑙ℎ�𝛼𝛼𝛼𝛼 � 𝑍𝑍𝑍𝑍� 𝑍𝑍𝑍𝑍𝑚𝑚𝑚𝑚−1.
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Then, replacing in (4), we obtain for k ≥ 1 and 𝑚𝑚𝑚𝑚 = 0,

𝐴𝐴𝐴𝐴0(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘+1 + 𝐵𝐵𝐵𝐵0(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 + 𝐶𝐶𝐶𝐶0(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘−1 − 𝜀𝜀𝜀𝜀𝑓𝑓𝑓𝑓0
𝑘𝑘𝑘𝑘+12 = 0,

with

⎩
⎪
⎨

⎪
⎧

𝐴𝐴𝐴𝐴0(𝑍𝑍𝑍𝑍) = −2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖(1 − 𝜆𝜆𝜆𝜆) + (2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆) 𝑍𝑍𝑍𝑍,
 

𝐵𝐵𝐵𝐵0(𝑍𝑍𝑍𝑍) = 2𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇) − 2𝑣𝑣𝑣𝑣1𝑙𝑙𝑙𝑙ℎ�𝛼𝛼𝛼𝛼 − 2𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇) 𝑍𝑍𝑍𝑍,
 

 𝐶𝐶𝐶𝐶0(𝑍𝑍𝑍𝑍) = 2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖(1 − 𝜆𝜆𝜆𝜆) − 2(1 − 𝑣𝑣𝑣𝑣1)𝑙𝑙𝑙𝑙ℎ�𝛼𝛼𝛼𝛼 + (−2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆) 𝑍𝑍𝑍𝑍.

Finally, replacing in (5), we obtain for k ≥ 1 and 𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀 + 1,

𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀+1(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘+1 + 𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀+1(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 + 𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀+1(𝑍𝑍𝑍𝑍)𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘−1 − 𝜀𝜀𝜀𝜀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀+1
𝑘𝑘𝑘𝑘+12 = 0,

where

⎩
⎪
⎨

⎪
⎧ 𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀+1(𝑍𝑍𝑍𝑍) = �2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆 + �−2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖(1 − 𝜆𝜆𝜆𝜆)� 𝑍𝑍𝑍𝑍� 𝑍𝑍𝑍𝑍𝑀𝑀𝑀𝑀 ,

 
𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀+1(𝑍𝑍𝑍𝑍) = �−2𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇) + �2𝜎𝜎𝜎𝜎(1 − 2𝜇𝜇𝜇𝜇) − 2𝑣𝑣𝑣𝑣1𝑙𝑙𝑙𝑙ℎ�𝛼𝛼𝛼𝛼 � 𝑍𝑍𝑍𝑍� 𝑍𝑍𝑍𝑍𝑀𝑀𝑀𝑀 ,

 
 𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀+1(𝑍𝑍𝑍𝑍) = �−2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆 + �2𝜇𝜇𝜇𝜇𝜎𝜎𝜎𝜎 + 𝑖𝑖𝑖𝑖(1 − 𝜆𝜆𝜆𝜆) − 2(1 − 𝑣𝑣𝑣𝑣1)𝑙𝑙𝑙𝑙ℎ�𝛼𝛼𝛼𝛼 � 𝑍𝑍𝑍𝑍� 𝑍𝑍𝑍𝑍𝑀𝑀𝑀𝑀 .

When 𝜓𝜓𝜓𝜓 is real, it is obvious from the equation 
(9) that 𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 remains bounded. Otherwise, a sufficient 
condition for the convergence of the scheme is that

�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� ≤ 1.                            (9)

In that case, one has

�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = |𝑋𝑋𝑋𝑋| ≤ min �|𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚|
|𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚|  , 0 ≤ 𝑚𝑚𝑚𝑚 ≤ 𝑀𝑀𝑀𝑀 + 1�. (10)

Taking 𝑚𝑚𝑚𝑚 = 0, supposing that 𝑙𝑙𝑙𝑙 = 𝑜𝑜𝑜𝑜(ℎ2) and 
following the calculations given by Ben

Mabrouk et al. in [2], the equations (9) and (10)
lead to,

|𝐵𝐵𝐵𝐵0|2 − |𝐴𝐴𝐴𝐴0|2 ≤ 0,

and the result follows.

5. Numerical implementations

We want to investigate the noise effects on 
stationary solutions in a concrete situation. We recall 
that the deterministic solutions take the following 
form

𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = �
2𝑎𝑎𝑎𝑎
qs

exp�𝑖𝑖𝑖𝑖 �
1
2
𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥 − 𝜃𝜃𝜃𝜃𝑡𝑡𝑡𝑡 + 𝜑𝜑𝜑𝜑� + 𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐ℎ�√𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡) + 𝜙𝜙𝜙𝜙��.

where 𝑎𝑎𝑎𝑎, qs, 𝜃𝜃𝜃𝜃 = c2

4
− 𝑎𝑎𝑎𝑎, 𝜑𝜑𝜑𝜑 and 𝜙𝜙𝜙𝜙 are appropriate 

constants. It is a soliton-type disturbance which 
travals with speed 𝑐𝑐𝑐𝑐 and with a governed amplitude.

In the treated example, the time and space partial 
derivative parameters are fixed to the particular case 
where

𝜆𝜆𝜆𝜆 =
1
5

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇𝜇𝜇 =
1
3

 .

For the numerical scheme (3)-(5), the 
computations are done in the space domain [L1, L2],
with L1 = −80 and L2 = 100. The space step was
ℎ = 1. The considered time interval was [0, 10], with 
a time step 𝑙𝑙𝑙𝑙 = 0.01. The soliton parameters were 
fixed as follows,

𝑎𝑎𝑎𝑎 = 0.01, qs = 1 and c = 0.1
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and the phase parameters 

𝜙𝜙𝜙𝜙 = 𝜑𝜑𝜑𝜑 = 0.

For the nonlinearity, we took the values

𝑞𝑞𝑞𝑞 = 0.73, 𝑝𝑝𝑝𝑝 = 1.5 and 𝑣𝑣𝑣𝑣1 =0.5.

It was numerically proved that the asymptotic 
limit of the solution 𝑖𝑖𝑖𝑖(𝜀𝜀𝜀𝜀) of the problem (1), as 𝜀𝜀𝜀𝜀 goes 
to 0, is in fact, the stationary wave 𝑖𝑖𝑖𝑖(0), which 
corresponds to the the deterministic case (see Figure 
1), and physically interpreted by the absence of noise.

For small amplitudes of the noise, corresponding 
to small values of the parameter 𝜀𝜀𝜀𝜀, we can see that the 
solitary wave is not strongly perturbed and that the 
noise does not prevent its propagation. This is clearly 
expressed in Figure 2, where the values 𝜀𝜀𝜀𝜀 = 0.1, 𝜀𝜀𝜀𝜀 =
0.05 and 𝜀𝜀𝜀𝜀 = 0.04 were respectively drown in the 
parts (a), (b) and (c) of this figure.

However, as the noise level becomes higher, the 
wave is progressively destroyed. This is the subject 
of Figure 3, in which the values 𝜀𝜀𝜀𝜀 = 0.1, 𝜀𝜀𝜀𝜀 = 0.15

and 𝜀𝜀𝜀𝜀 = 0.25 correspond respectively to the parts (a), 
(b) and (c). 

Figure 1  – Plots in the (t,x)-plane of the stationary wave 
corresponding to the deterministic case: ε = 0 

Now, taking the amplitude 𝜀𝜀𝜀𝜀 of the noise greater 
than 0.3, it is clearly seen that the wave explodes 
under the influence of the additive noise. This blow-
up phenomenon appears in Figure 4, (a) and (b), 
respectively for 𝜀𝜀𝜀𝜀 = 0.45 and 𝜀𝜀𝜀𝜀 = 0.35.

(a)                                                                            (b)

(c)

Figure 2 – Plots in the (t,x)-plane of |u| for one trajectory
for small values of the amlitude of the noise.

(a) ε = 0.1, (b) ε = 0.05, (c) ε = 0.04
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(c)                                                                             (d)

 
(c) 
 

Figure 3 – Progressive destruction of the stationary wave,
plotted in the (t,x)-plane, as the amplitude of the noise becomes bigger.

(a) ε = 0.1, (b) ε = 0.15, (c) ε = 0.25 

(a)                                                                       (b)

Figure 4 – Explosion of the wave, plotted in the (t,x)-plane,
under the effect of big values of the noise.

(a) ε = 0.45, (b) ε = 0.35. 

6. Conclusion

It is noted that the stochastic nonlinear 
equation (1) can be considered as an additive
white noise random perturbation of the 
deterministic equation, defined for 𝜀𝜀𝜀𝜀 = 0. Such a 
perturbation occurs when the size of the noise, 
described by the real-value parameter 𝜀𝜀𝜀𝜀, is
positive. We proved that as 𝜀𝜀𝜀𝜀 approaches zero, the 

solution of the perturbed problem converges to the 
unique trajectory of the deterministic equation,
which is the solitary wave. The stochastic model 
appears to be more realistic, and one can observe,
for small values of 𝜀𝜀𝜀𝜀, a similar evolution 
phenomena about the solution as that given by the 
deterministic case. However, an explosion of the 
solution and a blow-up phenomena can be noted 
as 𝜀𝜀𝜀𝜀 becomes bigger.
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