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Bianchi Type-II Renyi Holographic Dark Energy Model 
in Saez-Ballester Theory of Gravity

Abstract. In Saez-Ballester’s (Physics Letters A: 113, 467, 1986) theory of gravitation, the paper presents 
the study of Bianchi type-ІІ interacting Rényi holographic dark energy. We determine interacting dark 
energy models by considering a correlation between the metric potentials to solve the field equations of 
the model. This results in a dynamical deceleration parameter demonstrating a shift in the cosmic rate of 
acceleration from deceleration to acceleration, with a redshift z change that is compatible with observa-
tions. Despite assuming several values to parameters ωde close to –1 at z = 0 and is in agreement with the 
most recent observations. Next, we discovered that the squared sound speed, v2

s, is negative at the initial
epoch and positive at the present epoch, implying instability against perturbations at the initial epoch and 
stable at the present era. The ωde – ω´de  plane is constructed to investigate the evolution of the models’ EoS
parameter turned out to be in the freezing zone. As should be the case in an expanding universe, the strong 
energy conditions of the models are violated. Statefinders (r, s) plane confirms that our model includes the 
Chaplygin gas, phantom and ΛCDM limit.
Keywords: LRS Bianchi type-ІІ metric, Saez-Ballester theory, Rényi holographic dark energy, scalar-
tensor theory, cosmology. 
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Bianchi Type-II Renyi Holographic Dark Energy Model in Saez-Ballester Theory of Gravity

Abstract. In Saez-Ballester's (Physics Letters A: 113, 467, 1986) theory of gravitation, the paper presents the study 
of Bianchi type-𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 interacting Rényi holographic dark energy. We determine interacting dark energy models by
considering a correlation between the metric potentials to solve the field equations of the model. This results in a
dynamical deceleration parameter demonstrating a shift in the cosmic rate of acceleration from deceleration to
acceleration, with a redshift 𝑧𝑧𝑧𝑧 change that is compatible with observations. Despite assuming several values to parameters
𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 close to −1 at 𝑧𝑧𝑧𝑧 = 0 and is in agreement with the most recent observations. Next, we discovered that the squared
sound speed, 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2, is negative at the initial epoch and positive at the present epoch, implying instability against perturbations
at the initial epoch and stable at the present era. The 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑-𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

′ plane is constructed to investigate the evolution of the
models’ EoS parameter turned out to be in the freezing zone. As should be the case in an expanding universe, the strong 
energy conditions of the models are violated. Statefinders (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) plane confirms that our model includes the Chaplygin 
gas, phantom and Λ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 limit.

Keywords: LRS Bianchi type-𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 metric, Saez-Ballester theory, Rényi holographic dark energy, scalar-tensor theory,
cosmology.

Introduction 

Cosmological acceleration is taking place in our 
universe. It is believed this is due to dark energy 
(DE), an enigmatic energy source with very negative 
pressure. Various cosmological observations have 
verified the existence of this kind of energy [1]-[2]. 
But what exactly it is is still a mystery that requires 
solving. Studying the dynamics of various DE 
models is one way to tackle the DE issue; modifying 
Einstein-Hilbert's action of general relativity results 
in new theories of gravity is the other. Equation of 
state (EoS) parameters allows DE models to be 
differentiated from the cosmological constant 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, where 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the pressure and 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the 
energy density of DE. Scalar field models are among 
the most famous DE models presented in the 
literature [3]-[6]. Research into the theories of Brans-
Dicke (BD) [7] and Saez-Ballester (SB) [8] as well as 
the f(R) and f(R,T) theories [9]-[10] (where R is the 

curvature scalar and T is the trace of the energy-
momentum tensor) is influential in explaining the DE 
models among the many alternative theories of 
gravity. One may find a comprehensive analysis of 
DE models and revised theories of gravity in the cited 
works [12]–[14].  

The metric potentials are associated with a 
dimensionless scalar field in the SB scalar-tensor 
theory of gravity. The SB theory of gravitation is a 
scalar-tensor theory that extends general relativity by 
incorporating a scalar field in the gravitational 
framework. This theory has been explored in the 
context of various cosmological models, particularly 
those involving holographic DE (HDE). The SB 
theory introduces a non-minimal coupling between 
the scalar field and the geometry of space-time. This 
coupling allows for richer dynamics compared to 
standard general relativity. In HDE models, scalar 
fields often play a crucial role in driving the 
accelerated expansion of the universe and in 
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explaining the nature of DE. The SB framework 
provides a flexible tool to model these scalar fields. 
When combined with the SB framework, the theory 
can provide insights into how scalar fields interact 
with holographic bounds to influence the accelerated 
expansion. The SB framework can be tuned to align 
with the observations while still exploring beyond-
standard cosmology scenarios. The SB theory of 
gravitation provides a versatile and robust theoretical 
framework to extend the scope of HDE models. By 
incorporating scalar fields with non-minimal 
coupling, it allows for a deeper exploration of 
cosmological phenomena, addresses observational 
challenges, and opens avenues for connecting 
holography with fundamental aspects of gravitational 
physics. Saez and Ballester [8] start with the 
Lagrangian ( ),,

,
µ

µφφωφ nRL −=  where R  is the 
scalar curvature; ,n  an arbitrary exponent; and ,ω  a 
dimensionless coupling constant. The independent 
variation of the metric tensor gµν and scalar field φ  

leads, respectively, to the field equations  
 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −
1
2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 �𝑤𝑤𝑤𝑤,𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤,𝑖𝑖𝑖𝑖 −

1
2
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘� = 

 
= −8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝑐𝑐𝑐𝑐4
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                    (1) 

 
          2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤;𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛−1𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘 = 0           (2) 
 
using the matter's stress-energy tensor denoted by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 
the gravitational constant denoted by G, a 
dimensionless constant denoted by 𝑤𝑤𝑤𝑤, and partial and 
covariant differentiation, respectively, denoted by 
commas and semicolons. Here is the energy-
conservation equation: 
 

 𝑇𝑇𝑇𝑇;𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.                           (3) 

 
There has been a lot of focus on the holographic 

principle recently because of its significance in 
quantum gravity [15]-[17], where the entropy of a 
system is defined as one that depends on the surface 
area around it rather than the volume. There is a 
theoretical connection between infrared (IR) and 
ultraviolet (UV) cutoffs, and the holographic 
principle sets a maximum for the universe's entropy 
in a cosmic setting. The total energy in an area of size 
L cannot be more than the mass of a black hole of the 

same size if there is an energy density 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in the UV-
associated region, hence [5, 6]  

 
 𝐿𝐿𝐿𝐿3𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

2.                     (4) 
 
Here, the holographic energy density (HDE) is 

derived by taking into account the equality in Eq. (4), 
which allows us to find the maximum value of L  

 
𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 3𝜉𝜉𝜉𝜉2𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

2𝐿𝐿𝐿𝐿−2.                  (5) 
 
Here 𝜉𝜉𝜉𝜉 is a numerical constant and 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝

−2 = 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 
is the reduced Planck mass. The future event horizon 
is the most accurate model for non-interacting HDE 
with an appropriate constant c, according to Li [6], 
whereas the Hubble and particle horizons do not fit 
well with the universe. Aviles et al. [18] have 
explored a model that explains cosmic acceleration 
and the role of dark matter within Einstein's theory of 
cosmology. The holographic energy density is 
sensitive to changes in the area law of entropy, which 
determines the energy density of the HDE. Entropy 
formalisms such as Tsallis HDE (THDE) [19], 
Sharma-Mittal HDE (SMHDE) [20], and Rényi HDE 
model (RHDE) [21] have been used for designing 
HDE models in recent times. The Chern-Simons 
theory of gravity has been used to examine the 
SMHDE, THDE, and RHDE cosmological models 
within the framework of the DGP braneworld, a D-
dimensional fractal universe [22]-[23]. The 
observational restrictions on the RHDE models have 
been studied by Aditya et al. [26], Prasanthi and 
Aditya [24]-[25], and Aditya and Aditya [24]. Along 
with three other parametrizations of the dark 
matter/DE interaction, Sharma and Dubey [27] tested 
RHDE in an isotropic flat universe with the Hubble 
horizon as the infrared cutoff. As an IR cut-off, 
Chunlen and Rangdee [28] examined the RHDE 
model with particles and future horizons. Santhi and 
Chinnappalanaidu [29] studied RHDE in Ruban's 
Universe, with Hubble Horizon handling the infrared 
cutoff. 

The fact that the visible universe is nearly 
homogenous and isotropic is well recognized. 
Therefore, the Friedmann-Robertson-Walker (FRW) 
models have garnered significant interest in the field 
of cosmology. Nevertheless, the presence of a limited 
number of variations in different directions during 
the first phases of the universe's development 
prompts us to examine the Bianchi type (BT) models,  
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which exhibit both uniformity and anisotropy. BT 
models are the most basic representation of an 
anisotropic world, characterised by spatial 
homogeneity, anisotropy, and a flat geometry. BT-II, 
VIII, and IX belong to the classification of spatially 
homogeneous but anisotropic cosmological models 
based on the Lie algebra of their isometry groups. 
Each type represents a different symmetry structure 
and geometric complexity, offering distinct insights 
into the dynamics of the universe in General 
Relativity. BT-II is simpler and often used as a 
stepping stone to explore general anisotropic 
behaviour. It provides insights into specific cosmic 
conditions without the full complexity of types VIII 
and IX. BT-VIII and IX are more critical for 
understanding the deep theoretical aspects of 
cosmology, such as chaotic dynamics, singularity 
structure, and the implications of anisotropy in 
quantum gravity and early-universe cosmology. 
Thus, while BT-II is valuable for specific, 
manageable problems, BT-VIII and IX are pivotal in 
addressing fundamental questions about the 
universe's origin and behaviour in extreme regimes. 
It represents a simpler anisotropic space-time with 
one degree of freedom in the anisotropy. It is simpler 
to study due to reduced complexity compared to 
types VIII and IX. It provides a bridge between fully 
isotropic models (like FRW) and complex 
anisotropic models (like VIII and IX). In recent 
studies, several authors have examined BT models 
while considering various factors like dust, stiff fluid, 
cosmic strings, and the cosmological constant. The 
purpose of these investigations is to explore the 
significance of anisotropies in the universe [30]-[38]. 
When there was a significant scalar field in gravity, 
Aditya and Reddy [39] described the BT model. 
Daniel Raju et al. [40]–[42] have conducted 
numerous studies on anisotropic DE models with 
huge scalar fields. An anisotropic cosmic model with 
a scalar field in 𝑓𝑓𝑓𝑓(𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇) gravity has been studied by 
Aditya [43]. 

This study explores the BT-II Rényi holographic 
dark energy model inside the Saez-Ballester scalar-
tensor theory of gravity, driven by the previous 
debate. Here is the structure of the paper: Our 
representation of the interacting RHDE model is 
given by the solutions to the field equations that we 
derive in Section 2. Also included in this part are the 
models' varied physical features. Section 3 includes a 
comparative analysis of our model with observational 
data. In Section 4, we provide an overview of the 
findings and interpretations. 

Metric and field equations 
 
We examine the BT-II space-time that is spatially 

homogenous as  
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 − 𝛼𝛼𝛼𝛼2(𝑑𝑑𝑑𝑑)(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2) − 
 

−𝛽𝛽𝛽𝛽2(𝑑𝑑𝑑𝑑)(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)2                    (6) 
 
where 𝛼𝛼𝛼𝛼(𝑑𝑑𝑑𝑑) and 𝛽𝛽𝛽𝛽(𝑑𝑑𝑑𝑑) are the scale factors. The 
average scale factor and spatial volume are 
 

 𝑎𝑎𝑎𝑎(𝑑𝑑𝑑𝑑) = (𝛼𝛼𝛼𝛼2𝛽𝛽𝛽𝛽)
1
3                       (7) 

 
 𝑉𝑉𝑉𝑉 = 𝛼𝛼𝛼𝛼2𝛽𝛽𝛽𝛽.                            (8) 
 
The average Hubble parameter and scalar 

expansion 𝜃𝜃𝜃𝜃 are  
 

𝐻𝐻𝐻𝐻 = �̇�𝑎𝑎𝑎
𝑎𝑎𝑎𝑎

= 1
3
�2�̇�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

+ �̇�𝛽𝛽𝛽
𝛽𝛽𝛽𝛽
�                    (9) 

 
𝜃𝜃𝜃𝜃 = 3𝐻𝐻𝐻𝐻 = 2�̇�𝛼𝛼𝛼

𝛼𝛼𝛼𝛼
+ �̇�𝛽𝛽𝛽

𝛽𝛽𝛽𝛽
.                     (10) 

 
The shear scalar and average anisotropy of the 

model are   
 

𝜎𝜎𝜎𝜎2 = 1
3
��̇�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼
− �̇�𝛽𝛽𝛽

𝛽𝛽𝛽𝛽
�
2
                   (11) 

 

𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚 = 1
3
∑3𝑖𝑖𝑖𝑖𝑖1 �

Δ𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻
�
2
.                (12) 

 
where Δ𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 = 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 − 𝐻𝐻𝐻𝐻, 𝑖𝑖𝑖𝑖 = 1,2,3, and  𝐻𝐻𝐻𝐻1 = 𝐻𝐻𝐻𝐻2 =
�̇�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

,𝐻𝐻𝐻𝐻3 = �̇�𝛽𝛽𝛽
𝛽𝛽𝛽𝛽

. 
SB field equations are given by (we assume 

8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 = 𝑐𝑐𝑐𝑐 = 1)  
 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −
1
2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 �𝑤𝑤𝑤𝑤,𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤,𝑖𝑖𝑖𝑖 −

1
2
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘� = 

 
= −(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)                      (13) 

 
2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤;𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛−1𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘𝑤𝑤𝑤𝑤,𝑘𝑘𝑘𝑘 = 0         (14) 
 

�𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�;𝑖𝑖𝑖𝑖
= 0.                  (15) 

 
which is the result of field equations (13) and (14). 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are energy-momentum tensors for 
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pressure-less matter and Renyi HDE, which are 
defined as  
 

 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖;       (16) 
 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = [1,−(𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜁𝜁𝜁𝜁),− 
 

−(𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜁𝜁𝜁𝜁),−𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑              (17) 
 
here 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are the pressure and energy density 
of DE, respectively, and 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 is the energy density of 
matter. Here skewness parameter 𝜁𝜁𝜁𝜁 is the deviation 
from 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 along 𝑥𝑥𝑥𝑥 and 𝑑𝑑𝑑𝑑 axes.  

The field equations (13) for the metric (6) 
produce the following equations when adopting co-
moving coordinates:  

 
2�̇�𝛼𝛼𝛼�̇�𝛽𝛽𝛽
𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽

+ �̇�𝛼𝛼𝛼2

𝛼𝛼𝛼𝛼2
− 1

4
𝛽𝛽𝛽𝛽2

𝛼𝛼𝛼𝛼4
+ 𝑤𝑤𝑤𝑤

2
𝜙𝜙𝜙𝜙𝑛𝑛𝑛𝑛�̇�𝜙𝜙𝜙2 = 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 (18) 

  
�̈�𝛽𝛽𝛽
𝛽𝛽𝛽𝛽

+
�̈�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

+
�̇�𝛼𝛼𝛼�̇�𝛽𝛽𝛽
𝛼𝛼𝛼𝛼𝛽𝛽𝛽𝛽

+
1
4
𝛽𝛽𝛽𝛽2

𝛼𝛼𝛼𝛼4
−
𝑤𝑤𝑤𝑤
2
𝜙𝜙𝜙𝜙𝑛𝑛𝑛𝑛�̇�𝜙𝜙𝜙2 = 

 
= −(𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜁𝜁𝜁𝜁)𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                  (19) 

  
2�̈�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

+ �̇�𝛼𝛼𝛼2

𝛼𝛼𝛼𝛼2
− 3

4
𝛽𝛽𝛽𝛽2

𝛼𝛼𝛼𝛼4
− 𝑤𝑤𝑤𝑤

2
𝜙𝜙𝜙𝜙𝑛𝑛𝑛𝑛�̇�𝜙𝜙𝜙2 = −𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (20) 

  
�̈�𝜙𝜙𝜙 + �̇�𝜙𝜙𝜙 �2 �̇�𝛼𝛼𝛼

𝛼𝛼𝛼𝛼
+ �̇�𝛽𝛽𝛽

𝛽𝛽𝛽𝛽
� + 𝑛𝑛𝑛𝑛

2
�̇�𝜙𝜙𝜙2

𝜙𝜙𝜙𝜙
= 0        (21) 

and  

�̇�𝜌𝜌𝜌𝑚𝑚𝑚𝑚 + �2
�̇�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

+
�̇�𝛽𝛽𝛽
𝛽𝛽𝛽𝛽
� 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 + �̇�𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 

+ �2 �̇�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

+ �̇�𝛽𝛽𝛽
𝛽𝛽𝛽𝛽
� (1 + 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝜁𝜁𝜁𝜁𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�̇�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

= 0, (22) 
 
where an overhead dot denotes differentiation with 
respect to cosmic time 𝑡𝑡𝑡𝑡. 

Observations like the cosmic microwave 
background anisotropies, baryon acoustic 
oscillations, and weak lensing are sensitive to the 
interaction between matter and DE. Including 
interaction in cosmological models allows a better fit 
to data and can lead to new testable predictions, such 
as standard ΛCDM behaviour. With this motivation, 
here, we presume that DE and matter interact with 
one another. As a result, the energy-conservation 
equation Eq. (22) can be written for matter and DE as   

 
�̇�𝜌𝜌𝜌𝑚𝑚𝑚𝑚 + 3𝐻𝐻𝐻𝐻𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑄𝑄𝑄𝑄,                  (23) 

  

�̇�𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 3𝐻𝐻𝐻𝐻(1 + 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝜁𝜁𝜁𝜁𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�̇�𝛼𝛼𝛼
𝛼𝛼𝛼𝛼

= −𝑄𝑄𝑄𝑄. (24) 
 
Here 𝑄𝑄𝑄𝑄 is assumed as follows  
 

𝑄𝑄𝑄𝑄 = 3𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐻𝐻𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                       (25) 
 
 
where 𝑄𝑄𝑄𝑄 is the matter-DE interaction term and is a 
coupling constant (Xu [44]; Sobhanbabu and Santhi 
[45]). Because the positive parameter 𝑏𝑏𝑏𝑏 will result in 
negative 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚 in the flat universe, the parameter 𝑏𝑏𝑏𝑏 is 
assumed to be negative. 𝑄𝑄𝑄𝑄 can shift its sign from 𝑄𝑄𝑄𝑄 <
0 to 𝑄𝑄𝑄𝑄 > 0 as the universe’s expansion changes from 
deceleration (𝑏𝑏𝑏𝑏 > 0) to acceleration (𝑏𝑏𝑏𝑏 < 0). For 
𝑄𝑄𝑄𝑄 < 0, energy moves from matter to RHDE, whereas 
for 𝑄𝑄𝑄𝑄 > 0, energy flows from RHDE to matter. 

The field equations (18)-(21) create a system of 
four differential equations with seven unknowns, 
namely, 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽, 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚, 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝜁𝜁𝜁𝜁 and 𝜙𝜙𝜙𝜙. Consequently, 
to get a precise answer to the nonlinear equations, we 
must presuppose that the shear scalar (Eq. (11)) is 
proportional to the scalar expansion (Eq. (10)), which 
in turn leads to a relationship between the metric 
potentials as described in [46]  

 
 𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘                          (26) 

 
where 𝑘𝑘𝑘𝑘 ≠ 1 is a constant that preserves space-time’s 
anisotropy. Using Eq. (26) in Eqs. (19) and (20), we 
get  
 

𝛽𝛽𝛽𝛽2𝑘𝑘𝑘𝑘�̇�𝛽𝛽𝛽 = 𝛽𝛽𝛽𝛽0 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �∫ �𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+𝛽𝛽𝛽𝛽
2(1−2𝑘𝑘𝑘𝑘)

𝑘𝑘𝑘𝑘−1
� 𝛽𝛽𝛽𝛽
�̇�𝛽𝛽𝛽

 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡�. (27) 
 
We make the assumptions [47]-[49] to get the 

model's explicit solution   
 

𝜁𝜁𝜁𝜁 = �𝜁𝜁𝜁𝜁0(𝑘𝑘𝑘𝑘−1)�̇�𝛽𝛽𝛽
𝛽𝛽𝛽𝛽

− 𝛽𝛽𝛽𝛽2(1−2𝑘𝑘𝑘𝑘)� 1
𝜁𝜁𝜁𝜁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

        (28) 
 
where 𝜁𝜁𝜁𝜁0 is an arbitrary constant. From Eqs. (27) and 
(28), we obtain the metric potentials as  
 

𝛼𝛼𝛼𝛼 = �(2𝑘𝑘𝑘𝑘 + 1) �
𝛽𝛽𝛽𝛽0
𝜁𝜁𝜁𝜁0

exp(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) + 𝛽𝛽𝛽𝛽1��
𝑘𝑘𝑘𝑘

2𝑘𝑘𝑘𝑘+1
;     

 

𝛽𝛽𝛽𝛽 = �(2𝑘𝑘𝑘𝑘 + 1) �𝛽𝛽𝛽𝛽0
𝜁𝜁𝜁𝜁0
𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) + 𝛽𝛽𝛽𝛽1��

1
2𝑘𝑘𝑘𝑘+1  (29) 
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where 𝛽𝛽𝛽𝛽0 and 𝛽𝛽𝛽𝛽1 are integrating constants. Using Eq. 
(29) in Eq. (21), we obtain the scalar field as  
 

𝜙𝜙𝜙𝜙 = � (𝑛𝑛𝑛𝑛+2)𝜙𝜙𝜙𝜙0
2𝛽𝛽𝛽𝛽1𝜁𝜁𝜁𝜁0(2𝑘𝑘𝑘𝑘+1)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔 �𝛽𝛽𝛽𝛽0
𝜁𝜁𝜁𝜁0

+ 𝛽𝛽𝛽𝛽1𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(−𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)��
2

𝑛𝑛𝑛𝑛+2. (30) 
 
Using Eq. (29) the metric (6) can, now, be written 

as  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 − 

− �(2𝑘𝑘𝑘𝑘 + 1) �𝛽𝛽𝛽𝛽0
𝜁𝜁𝜁𝜁0

exp(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) + 𝛽𝛽𝛽𝛽1��
𝑘𝑘𝑘𝑘

2𝑘𝑘𝑘𝑘+1× 
 

×(𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2) − �(2𝑘𝑘𝑘𝑘 + 1) �𝛽𝛽𝛽𝛽0
𝜁𝜁𝜁𝜁0
𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) +

+𝛽𝛽𝛽𝛽1��
𝑘𝑘𝑘𝑘

2𝑘𝑘𝑘𝑘+1 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)2.                 (31) 
 
The mean Hubble parameter (𝐻𝐻𝐻𝐻) and scalar 

expansion 𝜃𝜃𝜃𝜃 can be obtained as  
 
𝐻𝐻𝐻𝐻 = 𝜃𝜃𝜃𝜃

3
= 1

3
�2 �̇�𝛼𝛼𝛼

𝛼𝛼𝛼𝛼
+ �̇�𝛽𝛽𝛽

𝛽𝛽𝛽𝛽
� = 𝑏𝑏𝑏𝑏0𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)

3�𝑏𝑏𝑏𝑏0𝜁𝜁𝜁𝜁0
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏1�

.   (32) 

 
The shear scalar 𝜎𝜎𝜎𝜎2 and average anisotropy 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚 

of the model are obtained as  
 

𝜎𝜎𝜎𝜎2 = (𝑘𝑘𝑘𝑘−1)2𝑏𝑏𝑏𝑏02𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(2𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)

3�𝑏𝑏𝑏𝑏0𝜁𝜁𝜁𝜁0
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏1�

2 ,              (33) 

 
 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚 = 3(2𝑘𝑘𝑘𝑘2+1)

(2𝑘𝑘𝑘𝑘+1)2
. (34) 

 
It is observed that the average anisotropic 

parameter 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚 is constant throughout the evolution of 
the universe hence the model remains anisotropic. 
Also, for 𝑘𝑘𝑘𝑘 = 1 the model becomes isotropic and 
shear free.  

Rényi holographic dark energy: Tsallis (𝒮𝒮𝒮𝒮𝒯𝒯𝒯𝒯) and 
Rényi (𝒮𝒮𝒮𝒮ℛ) entropies are important generalized 

entropy parameters, and the relationship between 
them is given by  

 
𝒮𝒮𝒮𝒮ℛ = 1

𝛿𝛿𝛿𝛿
  𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛(1 + 𝛿𝛿𝛿𝛿𝒮𝒮𝒮𝒮𝒯𝒯𝒯𝒯).            (35) 

 
 𝒮𝒮𝒮𝒮𝒯𝒯𝒯𝒯 = 𝒜𝒜𝒜𝒜

4
. Here 𝒜𝒜𝒜𝒜 = 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋2 and 𝜋𝜋𝜋𝜋 is the IR cutoff, 

is the Bekenstein entropy. We can determine the 
RHDE density using the relation 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉 ∝ 𝑇𝑇𝑇𝑇  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 as  

 
𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 3𝑑𝑑𝑑𝑑2

𝐿𝐿𝐿𝐿2
(1 + 𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿𝜋𝜋𝜋𝜋2)−1.           (36) 

 
Here we assume the RHDE model with the 

Hubble horizon cutoff 𝜋𝜋𝜋𝜋 = 𝐻𝐻𝐻𝐻−1. We find the Hubble 
cutoff by inserting it into Eq. (36) as  

 
 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 3𝑑𝑑𝑑𝑑2𝐻𝐻𝐻𝐻2

1+𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻−2.                     (37) 
 
The fractional energy densities of matter (Ω𝑚𝑚𝑚𝑚) 

and DE (Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) are given as  
 

Ω𝑚𝑚𝑚𝑚 =
𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
𝜌𝜌𝜌𝜌𝑚𝑚𝑚𝑚

3𝐻𝐻𝐻𝐻2     and    

 Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑑𝑑𝑑𝑑2

1+𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿𝐻𝐻𝐻𝐻−2,                  (38) 
 
 𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the critical energy density. The non-

interactive and interacting RHDE models are studied 
in the following sections, and the physical 
importance of various cosmological parameters is 
discussed. 

Differentiating Eq. (37) with respect to time, we 
obtain  

 
�̇�𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �

4�̇�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻
− 2𝐻𝐻𝐻𝐻�̇�𝐻𝐻𝐻

𝐻𝐻𝐻𝐻2+𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿
�.             (39) 

  
In view of Eqs. (32) and (39), from Eq. (24), we 

obtain the EoS parameter of RHDE as  
 

 

𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −1 + 𝑏𝑏𝑏𝑏 �1 + �̇�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻2� + 2�̇�𝐻𝐻𝐻

3(𝐻𝐻𝐻𝐻2+𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿) −
4�̇�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻2 −

2𝜁𝜁𝜁𝜁0𝑘𝑘𝑘𝑘(𝑘𝑘𝑘𝑘−1)
(2𝑘𝑘𝑘𝑘+1)2𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 2𝑘𝑘𝑘𝑘𝛽𝛽𝛽𝛽2(1−2𝑘𝑘𝑘𝑘)

3𝐻𝐻𝐻𝐻2(2𝑘𝑘𝑘𝑘+1)𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
                      (40) 

 
where  

�̇�𝐻𝐻𝐻 = −𝑏𝑏𝑏𝑏02  exp(2𝜁𝜁𝜁𝜁0  𝑡𝑡𝑡𝑡)

3�𝑏𝑏𝑏𝑏0𝜁𝜁𝜁𝜁0
exp(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏1�

2 + 𝑏𝑏𝑏𝑏0  𝜁𝜁𝜁𝜁0  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0  𝑡𝑡𝑡𝑡)

3�𝑏𝑏𝑏𝑏0𝜁𝜁𝜁𝜁0
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏1�

.                                               (41) 
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Here Hubble parameter 𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡) and fractional 
energy density of RHDE Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are respectively given 
in Eqs. (32) and (38). 

EoS parameter 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: For 𝜔𝜔𝜔𝜔 = 1
3
, 𝜔𝜔𝜔𝜔 = 1  and 𝜔𝜔𝜔𝜔 =

0 (decelerating phases), it contains radiation, stiff 
fluid and matter-dominated (dust), respectively. It 
symbolizes the quintessence for −1 < 𝜔𝜔𝜔𝜔 < −1/3, 
the cosmological constant for 𝜔𝜔𝜔𝜔 = −1, and the 
phantom for 𝜔𝜔𝜔𝜔 < −1. For various values of d, the 
behaviour of the EoS parameter in terms of redshift 
for our interacting RHDE model is shown in Fig. 1. 
At first, the model starts in the matter-dominated 
period, then it fluctuates in the quintessence epoch, 

and finally it gets close to the phantom dividing line 
(𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −1).  Our resulting model's EoS parameter 
(𝑧𝑧𝑧𝑧,𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = (0,−0.71) at z=0 agrees well with recent 
data from Planck [50]. 

𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
′  plane: Here, the behaviour of 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
′  (where prime represents the derivative about 

’𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡))’ plane is presented. This plane was initially 
suggested to investigate the evolution of the 
quintessence DE (Caldwell and Linder [51]). This 
plane can be divided into two portions, which are 
referred to as freezing (𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 < 0, 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

′ < 0) and 
thawing (𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 < 0, 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

′ > 0). By taking the 
derivative of Eq. (40) about 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛(𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)), we obtain 

 
 

𝜔𝜔𝜔𝜔′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

2�̈�𝐻𝐻𝐻(𝐻𝐻𝐻𝐻2 + 𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿) − 4�̇�𝐻𝐻𝐻2𝐻𝐻𝐻𝐻
3𝐻𝐻𝐻𝐻(𝐻𝐻𝐻𝐻2 + 𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿)2

−
4
3
�
�̈�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻2 −

2�̇�𝐻𝐻𝐻2

𝐻𝐻𝐻𝐻3 � +
2𝜁𝜁𝜁𝜁0𝑘𝑘𝑘𝑘(𝑘𝑘𝑘𝑘 − 1)

(2𝑘𝑘𝑘𝑘 + 1)2
�

�̇�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻3Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+
Ω̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐻𝐻𝐻𝐻2� 

 

+ 2
3(2𝑘𝑘𝑘𝑘𝑘1)

�2(1−2𝑘𝑘𝑘𝑘)𝛽𝛽𝛽𝛽1−4𝑘𝑘𝑘𝑘�̇�𝛽𝛽𝛽𝐻𝐻𝐻𝐻2Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝛽𝛽𝛽𝛽2(2−2𝑘𝑘𝑘𝑘)(2𝐻𝐻𝐻𝐻�̇�𝐻𝐻𝐻Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝐻𝐻𝐻𝐻2Ω̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐻𝐻𝐻𝐻5Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

2 �                      (42) 

 
where  

 �̈�𝐻𝐻𝐻 = 2𝑏𝑏𝑏𝑏03  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(3𝜁𝜁𝜁𝜁0  𝑡𝑡𝑡𝑡)

3�𝑏𝑏𝑏𝑏0𝜁𝜁𝜁𝜁0
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)𝑘𝑏𝑏𝑏𝑏1�

3 −
𝑏𝑏𝑏𝑏02  𝜁𝜁𝜁𝜁0  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(2𝜁𝜁𝜁𝜁0  𝑡𝑡𝑡𝑡)

�𝑏𝑏𝑏𝑏0𝜁𝜁𝜁𝜁0
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)𝑘𝑏𝑏𝑏𝑏1�

2 + 𝑏𝑏𝑏𝑏0  𝜁𝜁𝜁𝜁02  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0  𝑡𝑡𝑡𝑡)

3�𝑏𝑏𝑏𝑏0𝜁𝜁𝜁𝜁0
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)𝑘𝑏𝑏𝑏𝑏1�

 (43) 

 
 and  
 Ω̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2𝐻𝐻𝐻𝐻�̇�𝐻𝐻𝐻𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿𝑑𝑑𝑑𝑑2

(𝐻𝐻𝐻𝐻2𝑘𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑)2
.                      (44) 

For various values, we displayed in Figure 2 the 
behaviour of the 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

′  plane in our interacting 
RHDE model. Starting in the thawing area, our non-
interacting RHDE model now fluctuates in the 
freezing region. Contemporary cosmological 
evidence suggests that the ice zone  
 

reveals an earlier cosmic acceleration period 
compared to the melting region. Therefore, our 
model agrees well with facts and shows cosmic 
acceleration in the frozen zone.   

Squared sound speed 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2: This parameter 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 is 
used to investigate the model’s stability. If 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 > 0, 
we get a stable model; otherwise (𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 < 0), one can 
get an unstable model. Here, 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 has the following 
form:  

 

𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 = �̇�𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�̇�𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �̇�𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�̇�𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 = 
 

= −1 + 𝑏𝑏𝑏𝑏 𝑏1 +
�̇�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻2� +

2�̇�𝐻𝐻𝐻
3(𝐻𝐻𝐻𝐻2 + 𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿)

−
4�̇�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻2 −

2𝜁𝜁𝜁𝜁0𝑘𝑘𝑘𝑘(𝑘𝑘𝑘𝑘 − 1)
(2𝑘𝑘𝑘𝑘 + 1)2𝐻𝐻𝐻𝐻Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+
2𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2(1−2𝑘𝑘𝑘𝑘)

3𝐻𝐻𝐻𝐻2(2𝑘𝑘𝑘𝑘 + 1)Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

 

+{
2�̈�𝐻𝐻𝐻(𝐻𝐻𝐻𝐻2 + 𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿) − 4�̇�𝐻𝐻𝐻2𝐻𝐻𝐻𝐻

3𝐻𝐻𝐻𝐻(𝐻𝐻𝐻𝐻2 + 𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿)2
−

4
3 �

�̈�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻2 −

2�̇�𝐻𝐻𝐻2

𝐻𝐻𝐻𝐻3 � +
2𝜁𝜁𝜁𝜁0𝑘𝑘𝑘𝑘(𝑘𝑘𝑘𝑘 − 1)

(2𝑘𝑘𝑘𝑘 + 1)2 �
�̇�𝐻𝐻𝐻

𝐻𝐻𝐻𝐻3Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+

Ω̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐻𝐻𝐻𝐻2� 

 

+
2𝑘𝑘𝑘𝑘1−4𝑘𝑘𝑘𝑘

3(2𝑘𝑘𝑘𝑘 + 1) �
2(1 − 2𝑘𝑘𝑘𝑘)�̇�𝑘𝑘𝑘𝐻𝐻𝐻𝐻2Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑘𝑘𝑘𝑘3(2𝐻𝐻𝐻𝐻�̇�𝐻𝐻𝐻Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐻𝐻𝐻𝐻2Ω̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

𝐻𝐻𝐻𝐻5Ω𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2
�} × 𝑏

4�̇�𝐻𝐻𝐻
𝐻𝐻𝐻𝐻

−
2𝐻𝐻𝐻𝐻�̇�𝐻𝐻𝐻

𝐻𝐻𝐻𝐻2 + 𝜋𝜋𝜋𝜋𝛿𝛿𝛿𝛿
�
−1
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Fig. 3 exhibits the behaviour of 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 versus 
redshift. We notice that 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 is initially negative, 
implying that our model is unstable. Furthermore, as 
the universe evolves, 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 > 0 demonstrates model is 
stable. Hence, our model is stable at the present 
epoch.  

Energy conditions: Initiating the study of energy 
conditions, the Raychaudhuri equations are funda-
mental when thinking about the congruence of time-
like and null geodesics. The energy requirements are 
used to demonstrate other general theorems about the 
behaviour of powerful gravitational fields. We often 
see the following energy scenarios:   

• Dominant energy condition (DEC): 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0, 
𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ± 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0.  

• Strong energy conditions (SEC) : 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥
0, 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 3𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0,  

 • Null energy conditions (NEC): 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0,  
 • Weak energy conditions (WEC): 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0, 

𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0,  
 Figure 4 illustrates the energy conditions for our 

models of RHDE. It is evident that the NEC is being 
violated, and as a consequence, the model indicates a 
Big Rip scenario. It is also seen that the WEC meets 
the requirement 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0. In addition, Fig. 4 shows 
that the DEC 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is not satisfied. Additionally, 
our models violate the SEC, which is appropriate. 
This tendency, which is caused by the universe’s late-
time acceleration, is consistent with modern 
observational data. 

 
 

 
 

Figure  1 – Plot of EoS parameter 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 versus redshift 𝑧𝑧𝑧𝑧 for 𝜁𝜁𝜁𝜁0 = 0.85, 
 𝑏𝑏𝑏𝑏0 = 0.04, 𝛿𝛿𝛿𝛿 = 0.00045, 𝑘𝑘𝑘𝑘 = 0.98, 𝑏𝑏𝑏𝑏 = 0.0045 and 𝑏𝑏𝑏𝑏1 = −0.035. 
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Figure  2 – Plot of 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
′  plane for 𝜁𝜁𝜁𝜁0 = 0.85, 𝑏𝑏𝑏𝑏0 = 0.04, 

 𝛿𝛿𝛿𝛿 = 0.00045, 𝑘𝑘𝑘𝑘 = 0.98, 𝑏𝑏𝑏𝑏 = 0.0045 and 𝑏𝑏𝑏𝑏1 = −0.035. 
 

 
   

Figure  3 –  Plot of 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠2 versus redshift 𝑧𝑧𝑧𝑧 for 𝜁𝜁𝜁𝜁0 = 0.85, 𝑏𝑏𝑏𝑏0 = 0.04, 
 𝛿𝛿𝛿𝛿 = 0.00045, 𝑘𝑘𝑘𝑘 = 0.98, 𝑏𝑏𝑏𝑏 = 0.0045 and 𝑏𝑏𝑏𝑏1 = −0.035. 
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Figure  4 – Plot of energy conditions versus redshift 𝑧𝑧𝑧𝑧 for 𝜁𝜁𝜁𝜁0 = 0.85,  
𝑏𝑏𝑏𝑏0 = 0.04, 𝛿𝛿𝛿𝛿 = 0.00045, 𝑘𝑘𝑘𝑘 = 0.98, 𝑏𝑏𝑏𝑏 = 0.0045 and 𝑏𝑏𝑏𝑏1 = −0.035. 

     
 
Scalar field 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡): For various values of 𝑏𝑏𝑏𝑏1, Fig. 

5 shows the behaviour of the ϕ(t) in terms of redshift, 
and Eq. (30) provides the scalar field of the models. 
Figure 5 shows that the scalar field is becoming 
smaller as the universe is getting older. Raju et al. 
[40, 41] found that the scalar field diminishes with 
cosmic duration in their analysis of the anisotropic 
DE and cosmic string cosmological model with a 
massive scalar field. Using a huge scalar meson field, 
Aditya et al. [52] addressed the BT-IX DE model in 
Lyra geometry. Rao et al. [53, 54] found a 
diminishing function of the scalar field in their study 
of the BT-I and BT-II massive scalar field models. 
Research into our scalar field is analogous to that of 
the DE models previously mentioned, as was 
established in the preceding debate. Further, it is 
observed that the scalar field representation is quite 
similar to exotic quasi-quintessence models widely 
investigated in the literature [55]-[58].  

Deceleration parameter (DP): If the model 
accelerates or decelerates, it will be shown by the 
signature of the DP (q). When q>0, the model shows 
decelerating expansion; when q=0, it shows 
continuous expansion; and in the case where −1 ≤
𝑏𝑏𝑏𝑏 < 0, it shows accelerating expansion. The cosmos 
displays super-exponential expansion for 𝑏𝑏𝑏𝑏 <
−1 and de Sitter (exponential) expansion for q=-1. 

For both the interacting and non-interacting cases, 
our model's DP is given by 

 
𝑏𝑏𝑏𝑏 = −1 − �̇�𝐻𝐻𝐻

𝐻𝐻𝐻𝐻2 = −1 − 𝑏𝑏𝑏𝑏1𝜁𝜁𝜁𝜁0
𝑏𝑏𝑏𝑏0  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0  𝑡𝑡𝑡𝑡)

.     (45) 
 
Figure 6 illustrates the relationship between the 

DP and the redshift z, considering various values of 
𝑏𝑏𝑏𝑏1. The model highlights the seamless transition from 
the universe's initial decelerated phase to its present 
accelerated phase. Around this region 0.65 < 𝑧𝑧𝑧𝑧 <
0.85, the universe changed from a decelerating to an 
accelerating phase. This is consistent with recent 
observations in cosmology [59, 60]. Capozziello et 
al. [59] examined the cosmographic constraints on 
the redshift at which the change from decelerating to 
accelerating expansion occurs in the f(R) theory of 
gravity. They found that the transition redshift (zt) for 
the accelerating expansion lies between 0.3 and 0.8. 
In their study, Muthukrishna and Parkinson [60] 
examined the cosmographic assessment of the 
transition to acceleration by using SN-Ia and BAO. 
They determined the bounds on the transition redshift 
for different expansions and found that in the most 
conservative scenario, the change occurred at a 
redshift greater than 0.14 with a 95% confidence 
level.
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Figure  5- Plot of scalar field 𝜙𝜙𝜙𝜙 versus redshift 𝑧𝑧𝑧𝑧 for 𝑛𝑛𝑛𝑛 = −1.5, 𝜙𝜙𝜙𝜙0 = 1.5, 𝜁𝜁𝜁𝜁0 = 0.85, 
 𝑏𝑏𝑏𝑏0 = 0.04, 𝑘𝑘𝑘𝑘 = 0.98 and 𝑏𝑏𝑏𝑏1 = −0.035. 

   

 
 

Figure  6 –  Plot of DP 𝑏𝑏𝑏𝑏 versus redshift 𝑧𝑧𝑧𝑧 for 𝜁𝜁𝜁𝜁0 = 0.85 and 𝑏𝑏𝑏𝑏0 = 0.04. 
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Figure  7 –  Plot of 𝑟𝑟𝑟𝑟 − 𝑠𝑠𝑠𝑠 plane for 𝜁𝜁𝜁𝜁0 = 0.85 and 𝑏𝑏𝑏𝑏0 = 0.04. 
     
 
Statefinder parameters: Several DE models have 

been proposed in recent years to elucidate the 
phenomenon of the universe's accelerating 
expansion. All of these different dark energy models 
have identical current values for their Hubble and 
DPs, which means they cannot be differentiated from 
one another. To do this, Sahni et al. [61] merged the 
deceleration and Hubble parameters, expressed as  

 

𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎
...

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎3 ,      𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑐𝑐−1
3(𝑞𝑞𝑞𝑞−1/2)

                (46) 
The regions shown below are defined by these 

statefinders: Λ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 for (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) = (1,0) and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
model for (𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠) = (1,1); 𝑟𝑟𝑟𝑟 < 1 gives quintessence 
and 𝑠𝑠𝑠𝑠 > 0 gives phantom DE phases; 𝑟𝑟𝑟𝑟 > 1 with 𝑠𝑠𝑠𝑠 <
0 establishes the Chaplygin gas model. 

 The statefinder parameters for our models are  

 

𝑟𝑟𝑟𝑟 = 10 − 18𝜁𝜁𝜁𝜁0
𝑏𝑏𝑏𝑏0 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)

�𝑏𝑏𝑏𝑏0
𝜁𝜁𝜁𝜁0
𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏1� + 9𝜁𝜁𝜁𝜁02

𝑏𝑏𝑏𝑏02 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(2𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)
�𝑏𝑏𝑏𝑏0
𝜁𝜁𝜁𝜁0
𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏1�

2
             (47) 

 

𝑠𝑠𝑠𝑠 = �3 −
6𝜁𝜁𝜁𝜁0

𝑏𝑏𝑏𝑏0 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)
�
𝑏𝑏𝑏𝑏0
𝜁𝜁𝜁𝜁0
𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏1� +

3𝜁𝜁𝜁𝜁02

𝑏𝑏𝑏𝑏02 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(2𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡)
�
𝑏𝑏𝑏𝑏0
𝜁𝜁𝜁𝜁0
𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜁𝜁𝜁𝜁0𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏1�

2

� 

 
× �− 3

2
− 𝑏𝑏𝑏𝑏1𝜁𝜁𝜁𝜁0

𝑏𝑏𝑏𝑏0 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝜁𝜁𝜁𝜁0 𝑡𝑡𝑡𝑡)
�                                                        (48) 
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Figure 7 depicts the 𝑟𝑟𝑟𝑟 − 𝑠𝑠𝑠𝑠 plane’s trajectory. The 
𝑟𝑟𝑟𝑟 − 𝑠𝑠𝑠𝑠 plane resembles the Λ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 model at late times. 
It can be seen that the behaviour of the 𝑟𝑟𝑟𝑟 − 𝑠𝑠𝑠𝑠 plane is 
similar to that of dynamical DE models such as 
Chaplygin gas (𝑠𝑠𝑠𝑠 < 0 and 𝑟𝑟𝑟𝑟 > 1) and phantom 
behaviour (𝑠𝑠𝑠𝑠 > 0). 

 
Results and Comparison 
 
We compare our work to recent research on the 

topic and discuss how it matches up with 
observational data in this section.  

Quintom and quasi-quintessence models aim to 
explain cosmic acceleration and dark energy, they 
approach the problem from very different 
perspectives. Quintom model through scalar fields 
and phantom energy crossing, and our model 
through holography, non-minimal coupling, and 
anisotropic space-time. Quintom model is primarily 
focused on dark energy driven by scalar fields and 
their equation of state, particularly with the 
possibility of crossing the phantom divide, allowing 
for a transition between decelerating and 
accelerating phases of the universe. The quasi-
quintessence model is primarily concerned with the 
evolution of a scalar field whose equation of state 
evolves dynamically but stays above −1 providing a 
model for dark energy that does not cross the 
phantom divide. Our model combines anisotropic 
cosmologies, non-minimal coupling between scalar 
fields and curvature, and RHDE. This model is a 
more general and exotic approach to explaining dark 
energy. Thus, the main difference lies in the 
complexity of the framework and the inclusion of 
anisotropy and holographic principles in our model. 
However, it is very clear that our model completely 
varies in quintessence region and finally approaches 
the ΛCDM model.  

Sadri and Vakili [62] investigated the FRW New 
HDE model in BD theory of gravity. They derived an 
EoS parameter that can enter the phantom regime 
(ωde < -1) without requiring interaction between DE 
and dark matter. Meanwhile, Sharif et al. [63] 
explored both interacting and non-interacting BT-I 
New HDE models in BD scalar-tensor gravity, 
obtaining a negative EoS parameter that results in an 
accelerating universe. Koussour et al. [64] examined 
the thermodynamic properties of a BT-I universe 

within a quadratic form of f(Q) gravity and discussed 
observational constraints. Their findings indicate that 
the EoS parameter ωde is currently in the quintessence 
region and is projected to become less than -1 in the 
future. Furthermore, the present values of the EoS 
parameter, specifically ωde = -0.92 for the Hubble 
dataset and ωde = -0.794 for the combined Hz + SNe 
+ BAO dataset, align well with recent observations 
from the Planck mission. Aditya [65] examined the 
Renyi HDE model within BT-I space-time under the 
SB theory of gravitation. The EoS parameter for this 
model is found to be close to -1 at z = 0, aligning with 
the latest observational data. Devi et al. [66] 
investigated the behaviour of Barrow HDE in the 
context of f(R, T) gravity against a flat FLRW space-
time. They reported EoS parameter values of 
−0.873−0.115

+0.078 and −0.866−0.130
+0.156. Motaghi et al. [67] 

explored modified Barrow entropy about the 
cosmological background, employing the Friedmann 
equations. Their findings indicate that the EoS 
parameter resides in the quintessence region in the 
past and crosses the phantom divide in the present 
epoch. Chokyi et al. [68] discussed the Barrow HDE 
model within the SB framework in a homogeneous 
and anisotropic Kantowski-Sachs universe, 
analyzing both non-interacting and interacting 
scenarios, with the future event horizon acting as the 
infrared cut-off. Their study focused on the evolution 
of the EoS parameter for both situations. Sireesha nd 
Satyanarayana [69] discussed non-interacting RHDE 
models in the SB theory of gravity. Sobhanbabu et al. 
[70] investigated the BT-III HDE model within the 
SB scalar-tensor theory of gravitation, concluding 
that the EoS parameter varies significantly within the 
aggressive phantom region, which is consistent with 
modern Planck observational data. Luongo and 
Muccino [71] have revised the dynamics of the 
universe using high-redshift data from gamma-ray 
bursts to constrain cosmographic parameters. Luongo 
and Muccino [72] have addressed the circularity 
problem by using gamma-ray bursts as distance 
indicators through a new technique involving Bezier 
polynomials. Luongo and Muccino [73] investigated 
model-independent constraints on the universe's 
kinematics, focusing on snap-and-jerk terms. Carloni 
et al. [74] have investigated the impact of the dark 
energy spectroscopic instrument 2024 data on dark 
energy models.
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In our RHDE model, the analysis of the EoS 

parameter demonstrates that the model begins in a 
matter-dominated era, transitions through a 
quintessence phase, and ultimately approaches the 
phantom divide line (ωde = -1). This behaviour is 
often referred to as having a ΛCDM nature. The 
present values of the EoS parameter for our model, at 
z = 0, are given by (d, ωde) = (4.5, -0.68), (5.5, -0.72), 
(6.5, -0.78). These findings stand in contrast to the 
models discussed previously. Additionally, it is 
important to present the Planck observational data as 
reported by Aghanim et al. [50]. 

 
Final Remarks 
 
This study explores the accelerating growth of the 

LRS BT-II universe by using the SB theory of gravity 
[8] and assuming the existence of RHDE. By 
utilizing the correlation between the metric 
potentials, we have derived a solution to the SB field 
equations, resulting in a variable DP. We examined 
many cosmological parameters to evaluate the 
accuracy of these findings. The results of our 
investigation are as follows:   

• The scalar field 𝜙𝜙𝜙𝜙 decreases as the universe 
evolves. According to the literature (Raju et al. [41, 
42]; Aditya et al. [52]; Rao et al. [53, 54]), the study 
of our scalar field is very similar to the previously 
mentioned dark energy models. The NEC is violated, 
and hence the model results in a Big Rip (Fig. 4). The 
WEC satisfied 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0, however, the DEC 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 did not satisfy. Additionally, as should be the 
case, our model violates the SEC. This tendency, 
which is caused by the universe’s late-time accele-
ration, is consistent with recent observational data.  

• Examination of the EoS parameters reveals 
that the anisotropic RHDE model starts in the matter-
dominated zone, crosses the quintessence region and 
approaches to phantom dividing line i.e., Λ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
model. Furthermore, it is useful to show here that the 

current values of the EoS parameter value in our 
model 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ −0.78   is in good agreement with 
Planck’s observed data (Aghanim et al. [50]). It 
demonstrates the agreement of our findings with the 
cosmic observations.  

• The 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
′  plane for our RHDE models is 

shown in Fig. 2, and the trajectories meet both 
freezing and thawing zones. However, in the present 
and future, the models only show freezing regions. 
Recent observations confirm that models that differ 
in the freezing area are the best candidates for 
explaining cosmic acceleration. The stability analysis 
shows that the models (ref. Fig. 3) are unstable in the 
past but stable in the present and future eras.  

• The DP experiences a change in its signature, 
changing from positive to negative or vice versa. The 
model illustrates the smooth shift from the initial 
decelerated phase to the current accelerated phase of 
the cosmos. The transition redshift of the universe 
(Fig. 6) at 0.65 < 𝑧𝑧𝑧𝑧 < 0.85. At a 95% confidence 
level, this is in agreement with SN-Ia and BAO 
cosmological observations [59, 60]. Furthermore, the 
current value of the DP 𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡) for our models is 𝑏𝑏𝑏𝑏 ≈
−0.72, which is consistent with the modern 
observations [75, 76] given as 𝑏𝑏𝑏𝑏 = −0.930 ± 0.218 
(𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎 + 𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧).  

• At late times, the statefinder plane (𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎) 
corresponds to the Λ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 model, and its behaviour is 
identical to that of the dynamical DE model, such as 
Chaplygin gas (𝑎𝑎𝑎𝑎 < 0 and 𝑎𝑎𝑎𝑎 > 1) and phantom model 
(𝑎𝑎𝑎𝑎 > 0) (Fig. 7).  
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