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Kinetic Characteristics of Electron Drift in Gas Discharge Plasma 

 
Abstract. An electron drift in a monatomic gas was studied for a spatially uniform electric field. 
Functions of the electron energy distribution are found by solving the Boltzmann equation in the two-term 
approximation and applying the Monte Carlo method. We take into account both elastic and non-elastic 
collisions of electrons with atoms, recombination at the walls. Integral characteristics of the electron drift 
in the gas were calculated, allowing to analyze the drift of electrons on a qualitative level. The results of 
calculations of the energy balance of electrons and drift characteristics in argon are shown at the values of 
reduced field 1<E/N <28 Td.  
Keywords: Electron drift, gas discharge plasma, the Boltzmann equation, Monte Carlo method, Electron 
energy distribution function. 

 

 
Introduction 
 
Diffusion and drift of electrons in gases have 

been well studied both theoretically and 
experimentally [1, 2]. But in recent years there has 
been a great interest in simulation of kinetics of 
electrons in low-temperature plasma, due to 
numerous technological applications. It is the 
numerical simulation that gives accurate and 
complete information about the characteristics of 
gas-discharge plasma, which is necessary for 
understanding and interpreting the properties of 
dust structures in plasma. 

In many papers on the study of dusty plasma 
in the gas dc discharge at low gas pressure it is 
assumed that the plasma electrons have a 
Maxwellian distribution with a temperature which 
is determined from probe measurements [3]. 
Druyvesteyn distribution is sometimes used as an 
alternative model which does not lead to a 
significant difference in the characteristics of 
dusty plasmas (see the recent paper [4]). But it is 
well known that Maxwell and Druyvesteyn 
distributions are significantly different from the 

actual distributions of the electron energy in the 
gas discharge, because in a self-discharge, a 
decisive contribution to the electron velocity 
distribution is made by the ionization and 
recombination processes. 

Let’s consider the simplest statement - the 
drift of an electron in a uniform and constant 
electric field. We assume that the electron 
moves under the influence of a uniform electric 
field, suffering only elastic collisions with 
atoms. Then, in very weak fields, the deviation 
of the mean energy of electrons is small from 
the energy of atoms; the function of the electron 
energy distribution (EEDF) is close to the 
distribution of atoms, which can be assumed 
Maxwellian. But in a strong field, there is a 
sharp imbalance between the electron and 
nuclear subsystems, and the average electron 
energy is much higher than the energy of atom. 
In this case, the electron distribution function in 
absolute velocity (taking into account only 
elastic collisions) is determined by the balance 
between Joule heating and losses in elastic 
collisions with cold gas [1, 2, 5]:  
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where m, M are the masses of electron and atom, 
el  is a cross section of elastic collisions, the 

constant A is determined from the normalization 

condition 2

0

1 4 ( )c f c dc


  . 

In the case of a power-law dependence on the 
rate of cross-section: 0 0( ) ( / )r

el c c c  - 
integral in eq.(1) is calculated. If 

1/2
0 0( ) ( / )el c c c   , when the collision 

frequency is constant, the distribution (1) reduces 
to the Maxwell distribution, when cross-section is 
constant: 0( )el c   the distribution (1) 
becomes Druyvesteyn distribution [1, 2, 5]. 

Maxwell distribution is presented as: 
                                 

   1/2 exp /Maxwell ef T    ,           (2) 

 
and Druyvesteyn distribution can be written as: 

 
                              

   1/2 2 2exp /Druwestain Df      .        (3) 

 
They describe the electron distribution function only 
in the absence of non-elastic collisions birth or death 
of the electrons. Then the solution accuracy of eq. 
(1) is determined only by the error with which the 
collision cross section is approximated by a power-
law dependence on velocity (under the condition 
that the average energy of electrons is much higher 
than atomic one). 

It should be noted that the Druyvesteyn 
distribution generally has better agreement with 
experimental data than the Maxwell distribution. 
This is due to two factors. Firstly, the cross section 
of elastic collisions is often better approximated by a 
constant rather than by decreasing function of 
velocity. Secondly, at high collision energies, the 
constant cross-section better corresponds to the real 
situation, when the tail of the distribution function is 
cut off due to the appearance of threshold processes 
- excitation and ionization. 

In the steady-state current flow through the 
discharge tube, whose length is much greater than 

its diameter, ions and electrons from the positive 
column in consequence drift and diffusion reach 
the walls of the tube and there perish. Moreover, 
for ions in addition to the diffusion the drift in the 
radial field of the positive column becomes 
important.  

Electrons are trapped in the potential pit, but 
reach the walls of the tube almost immediately, as 
their energy exceeds the potential barrier. 
Completion of dying electrons on the wall occurs 
due to ionization of atoms by electron impact. In 
this case an electron loses a significant fraction of 
its energy and the energy of the emerging electron 
is close to zero. 

Thus, the self-discharge electron drifts and 
gains energy due to Joule heating, and then loses 
it at non-elastic collision, then when drifting again 
begins to gain power. If its energy is greater than 
the potential barrier, it almost immediately 
reaches a wall and recombines on it. But both 
Maxwell (2) and Druyvesteyn (3) distributions, as 
well as more general one (1) do not take into 
account the constant electron drift upward along 
the energy axis. Since it is the non-elastic 
processes that determine the nature of current 
flow through the discharge tube the use of 
solutions (1) in this case is not correct. 

Another limit for the EEDF is a "pipe-line" 
(pipe) model in which formation of the EEDF is 
determined by the Joule heating model and non-
elastic collisions, while the energy loss of 
electrons at elastic collisions with atoms are 
assumed to be negligible [2, 4]. In the pipeline 
model Joule heating is a drift of energy in the 
positive direction (i.e., the electron energy 
increases continuously). The drift velocity is 
determined by the diffusion of energy 

 

  

2 2 2

3e
e ED  

 .                       (4) 

The boundary conditions in the pipeline model are 
selected according to the assumption that the 
electrons drift from the original zero energy up to 
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some maximum energy, max , where they lose it 
all making the act of ionization or excitation.  

At a constant frequency of electron collisions 
with atoms, we obtain the following distribution 
of electron energy [3, 4]:  

1/2
max max max( , ) [1 ( / ) ] / 3f        .    (5)  

 
The average energy of the electrons in the 
distribution (5) is equal to 

 

                         

max max

max max max
0 0

3( , ) / ( , )
10

f d f d
 

            .                                  (6) 

 
The maximum energy max  can be put equal 

to either energy of the first excited level 
max 1E  or to ionization potential max I  . 

Some refinement of this model can be done, if we 
consider the different levels of excitation and 
ionization. Then the distribution function will be 
equal to the superposition of the N-solutions (5) 
with weights that take into account the share of 
this type of collisions:  

 
                                                  

( ) ( , )N n n
n

f f    
         

        (7) 

 

where the summation is over all levels, and 
weight 

1/2 1/2( ) / ( )n n N i N
i

f f           is 

determined by the relative share of the excitation 
frequency from the ground level to the level n in 
the total number of non-elastic collisions of 
electrons with atoms.  

Monte Carlo Model  
 
Consider the problem of modeling at the 

independent gas discharge. It should include 
consideration of the motion of electrons in an 
electric field, elastic collisions of electrons with 
atoms, non-elastic collisions and loss of electrons. 
For the gas discharge tube DC at reduced pressure it 
is necessary to record the impact ionization, energy 
consumption for the excitation of atoms and the 
recombination of electrons on the walls of the tube.  

The processes of excitation, ionization and 
recombination in real experimental conditions 
often cannot be taken into account in the spatially 
homogeneous (zero-dimensional) model, since the 
electrons appear in the tube and die on its surface. 
Therefore, the distribution of electrons and ions in 

the coordinates, even in the steady state is 
inhomogeneous. However, a model of spatially 
homogeneous drift and take into account loss of 
electrons on the tube walls by introducing a 
characteristic time of the withdrawal of electrons 
on the wall (the lifetime of electrons) can be 
taken. The introduction of the lifetime, which is 
the same for electrons with different energies, was 
not very well done in many papers. Because of the 
electron with low energy cannot overcome the 
potential barrier of the wall and stays inside the 
hole as long as its energy is sufficiently large to 
overcome the potential barrier. If the electron has 
sufficient energy to overcome the potential 
barrier, it almost immediately goes to the wall and 
dies (recombines) on it.  

Therefore, in this paper a different approach 
[6-8] was used to account for the birth and loss of 
electrons. For the process of electron drift in the 
positive column one can assume that total number 
of births and deaths of electrons are equal. Then 
the death of electrons on the walls can be taken 
into account by introducing into the algorithm a 
rule that for each act of ionization one electron is 
removed from the whole ensemble. The most 
logical for the problem of electron drift in the 
positive column is assumption that only a most 
energetic electron, which appears in an act of 
ionization, can leave the ensemble. The average 
energy of electrons that leave the system, can 
provide a good estimation of the potential of the 
wall. Thus, the wall potential is determined from 
the condition that the number of ionization events 
is equal to that of particles’ escapes from the 
system (number of acts of destruction at the wall).  

To calculate the drift characteristics of 
electrons in the gas the Monte Carlo method was 
used [6,8]. After each collision we integrated the 
equations of electron motion in a constant field, 
and in accordance with the known cross sections 
for elastic and non-elastic processes, the 
probability of an event was determined.  
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The processes of excitation, ionization and 
recombination in real experimental conditions 
often cannot be taken into account in the spatially 
homogeneous model. Nevertheless, we adopt the 
following model, which considers spatially-
homogeneous stationary flow of electrons under 
the following assumptions:  

1) Gas atoms have a Maxwellian velocity 
distribution and do not change their temperature 
by collisions with electrons;  

2) Elastic electron-atom collisions occur as 
collisions of hard spheres, i.e. at collisions 
isotropic scattering in the center of mass occurs, 
but the collision cross section is assumed to 
depend on the energy of their relative motion;  

3) The loss of electrons on the excitation of 
atomic levels is irretrievable, that means that the 
excited atoms lose their energy of excitation in the 
surround mode emission, metastable atoms diffuse 
beyond the boundaries of the volume;  

4) In electron-impact ionization one electron 
colliding with an atom loses energy equal to the 
sum of ionization energy and the kinetic energy of 
the second electron. After the act of ionization 
energy is assumed to be equal to: 

' '
1 1 2I     . We assume that the energy of 

the first electron is equally likely to take all 
possible values, and the energy of the second 
electron is determined from the energy 
conservation law:  

 

    
'
1 1( )I R    , '

2 1( )(1 )I R    ,         (8)  
 

where 0 1R   is a random number. 
5) The processes of recombination of 

electrons and atoms, quenching of excited levels 
and the transfer of resonance radiation do not 
change the electron energy.  

Let’s consider the energy balance of electrons. 
During the drift in electric field, electrons gain 
energy from the electric field. In a constant and 
uniform electric field due to Joule heating an 
electron acquires an average energy per time unit  

EWQ eEW ,                                (9) 
 

here e is electron charge, E is electric field 
strength, W is the drift velocity.  

Let’s consider the case when the electrons 
energy is much higher than the energy of atoms. 
Then in the stationary, spatially homogeneous 
case, the energy acquired by an electron is lost in 
elastic collisions with atoms, is spent on the 
excitation and ionization of atomic levels, in 
addition, electrons carry away or obtain energy by 
recombination:  

 
EW ea ex ion recQ Q Q Q Q    .              (10) 

 
The right side of this equation shows the 

corresponding average energy loss per time unit 
of a single electron (electron may also gain energy 
for example, three-body recombination). In the 
following calculations we have neglected the 
influence of recombination processes on the 
electrons energy i.e. 0recQ  .  

Model of the Boltzmann equation  
 
In an electric field E one-particle distribution 

function of the electron velocity F (r,v,t) is 
determined by solving the Boltzmann equation [1, 
2, 5]:  

 

( )t
e

F F e Fv E S F
t r m v

  
   

  


  ,         (11)  

where St (F) is a collision integral, r


 and 


are 
coordinate and velocity of electrons, t is the 
time.  

Since the solution of Boltzmann equation (11) 
is a very difficult task, for describing the kinetics 
of electrons in a gas discharge binomial 
approximation is often used. The Boltzmann 
equation in the binomial approximation in a 
uniform and constant electric field is as follows: 

 

1
0 0 0 0

0
1

( ) ( ) ( ) ( ) ( ),
3

( ) ( ) ( )

inel ionz
j w

j

z g m
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
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                          (12) 
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where, Sel(f0), Sj

in(f0), Sion(f0) are integrals of 
elastic, non-elastic and ionizing collisions of 
electrons with atoms, Sw(f0) is a term describing 
the process of electron loss to the walls of the 
discharge tube [1, 2, 5-7].  

In this paper, the system of equations (12) 
was solved by iteration method [7, 8]. Then 
obtained distribution functions were used to 
calculate various characteristics of the electron 
drift. We determined the drift velocity, average 
electron energy, etc. (For more detailed 
description of the problem and the method of 
solution obtained with the help of this model 
characteristics, see [9, 10]).  

There are reasonable doubts about the 
applicability of the binomial approximation to 
describe the properties of the discharge [2]. In any 
case it is impossible to carry out equality (as is 
often done) between the solution of Boltzmann 
equation and the binomial approximation. Since 
Monte Carlo method gives as accurate description 
as the Boltzmann kinetic equation, it is of great 
methodological interest to compare these two 
solutions to determine the accuracy of binomial 
approximation method. 

Results of calculations and discussion 
  
Let’s consider at first the results of simulation of 

electron drift at different values of electric field, 
which may be in different parts of the gas discharge. 
In calculations by the Monte Carlo method we used  

the condition of death on the walls only for electrons 
with high energy and determined the wall potential. 
In calculations, obtained by solving the Boltzmann 
equation, the loss of electrons on the walls was taken 
into account by introducing recombination time  
[2 - 10].  

Figure 1 show a typical dependence of the 
electron energy on the time when the values of 
reduced electric field are 1, 10 and 28 Td.  In 
Figure 1a - a regime of "weak" field (E /N = 1 
Td), when the electron energy reaches up to the 
energy of excitation and ionization. In this case 
the electron makes a chaotic movement along the 
energy axis only due to elastic collisions with 
atoms, in which, on average lose energy ~ m / M 
per collision and acquires energy by Joule heating. 
The distribution function of electron energy in this 
case is determined by (1).  

Figure 1b represents the mode of "moderately 
strong" field (E / N = 10 Td), when the field 
becomes strong enough, so that an electron can 
reach up the excitation energy, but there is not 
impact ionization from the ground state yet. In 
this case, self-discharge can exist due to stepwise 
ionization.  

Figure 1c shows the dependence of the 
electron energy on time for the case of a strong 
field, the electron can reach up the energy of 
excitation and ionization. In this case, the 
discharge will be maintained through the field 
without additional sources of ionization, i.e. it will 
be independent.  
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c) 
a) – a case of "weak" field (E / N = 1 Td), there are only elastic collisions; 

b) – a case of "moderately strong" field (E / N = 10 Td), excitation energy is high; 
c) – a case of "strong" field (E / N = 28 Td) – ionization starts.   

Figure 1 – The electron energy as a function of time 
 

 
In Table 1 for these three typical cases integral 

characteristics of the electron drift in a uniform 
external electric field are shown surface potential 
of the tube wall (V),the drift velocity W( km / s), 
average energy    (eV), the energy factor of 
Townsend /eD   (eV), reduced ionization 
coefficient of Townsend - / aN  (10-16 cm2),the 
rate of input energy for the elastic losses in the gas 

(( /ea EWQ Q ) * 100%), ionization (( /ion EWQ Q ) * 
100%) and excitation (( /ex EWQ Q ) * 100%) of 
argon atoms and the average energy after the act 
of excitation ( 1E  ), ionization ( I   ). 
Note that in cases of moderately strong and 
strong-field excitation demands at several times 
much energy than gas heating and ionization.  

 
Table 1 - Characteristics of the electron drift in argon (E1 = 11,5 eV, I = 15,8 eV) depending on the reduced field E/N = 
1, 10, 28 Td., P = 1 Torr, T = 298 K. 

E/N, Td    1.0  10.0  28.0  
 wall      -  13.0  15.0  

W, km/s, MC 32.4  97.1  240.0 
W, km/s, Boltzmann 30.1  95.3  237.8 

/eD  ,eV, MC 3.3  6.9  6.0  

  ,eV, MC 2.4  5.4  5.3  

  ,eV, Boltzmann 2.2  5.1  5.6  

/ aN  
, 10-16 cm2, MC

 -  2.8E-05  5.8E-03  

I1=15,8 eV 

E1=11,5 eV 

E1=11,5 eV 

I1=15,8 eV 
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 (
/ea EWQ Q

 ) *100%, MC
 100  26.6  10.3  

( 
/ex EWQ Q

 ) *100%, MC
 0  73.3  86.4  

( /ion EWQ Q ) *100%, MC
 0  0.043  3.3  

1E   ,eV, MC 0  1.1  2.2  

I   ,eV, MC 0  0.9  1.3  
 
 

   

 
To illustrate the accuracy of various models 

figure 2 presents the results of calculations of 
electron energy distribution functions for three 
variants of reduced field from the Table I. Monte 
Carlo simulation took into account the finiteness 
of wall potential and the loss of electrons on it; 
when solving the two-term approximation of the 
Boltzmann equation we used the model of 

ambipolar diffusion of electrons on the wall. For 
comparison, the distributions of Maxwell and 
Druyvesteyn are also shown with the same 
average energy of electrons, as in Monte Carlo 
calculations. The figures prove that results of 
EEDF calculations with the Boltzmann equation 
have a good agreement with calculations by 
Monte Carlo method.  

 
 
 

 
 
 

a) - a case of "weak" field (E / N = 1 Td), there are only elastic collisions. 

 
b) - a case of "moderately strong" field (E / N = 10 Td), excitation energy is high. 
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c) - a case of "strong" field (E / N = 28 Td) - ionization starts. 
 

Figure 2 - The distribution functions of electron energy for different values of the field
 
Table 2 shows the characteristics of electrons 

and experimental results from [11]. The results of 
calculations by Monte Carlo method gives slightly 
better agreement with experimental data for the 
electron temperature, calculations for two-term 
approximation have also a good agreement with 

experiments. It should also be borne in mind that 
experimental methods usually determine not the 
electrons’ temperature and their average energy, 
but the energetic Townsend coefficient, which for 
Maxwell distribution coincides with the 
temperature [1]. 

 
Table 2 - Characteristics of the electron drift in argon (E1 = 11,5 eV, I = 15,8 eV) at different values of gas pressure. 
The results of calculations and comparison with experiments [11] 

 
Pressure, torr  0,32  0,22  0,12  

E/N, Td   19.0  27.0  51.0  

 wall  ,eV, MC 16.0  17.0  18.0  

W, km/s, MC 17.3  23.6  40.5  

W, km/s, Boltzmann
 
 22.8 32.4  58.0  

/eD  ,eV, MC 6.8  6.8  7.0  

/eD   
,eV, Boltzmann

  
9 8.9 8.8 

  ,eV, MC 5.7  6.0  6.5  

  ,eV, Boltzmann
 

5.4  5.6  6.0  

/ aN  
, 10-16 cm2, MC

 0.00084  0.0046  0.034  

 (
/ea EWQ Q

 ) *100%, MC
 11.6  10.0 16.6  
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( 
/ex EWQ Q

 ) *100%, MC
 87.7  87.3  73.0  

( /ion EWQ Q ) *100%, MC
 0.7  2.7  10.4  

1E   ,eV, MC 1.7  2.2  3.0  

I   ,eV, MC 0.9  1.2  1.5  

     Те    ,eV, MC 3.8  4.0  4.3 

     Те    ,eV, Boltzmann 3.6 3.7  4.0  
     Те    ,eV, experiment[12] 3.2 ± 1  4.0 ± 1  5.0 ± 1  

 

Conclusions  
 
The model of electron drift in a uniform static 

electric field was constructed taking into account 
non-elastic processes and loss of electrons on the 
walls of the tube. A comparison of results by 
Monte Carlo simulation with the solutions of the 
Boltzmann equation in a two-term approximation 
was made. Calculated data were compared with 
experimental results of probe measurements.  

 
Acknowledgments 
 
This work has been supported by the Ministry 

of Education and Science of Kazakhstan under 
grants 1115/GF 2013(EP-10) and 1611/GF3 
2013(IPC-34). 

 
References  
 
1. Huxley L., Crompton R. Diffusion and 

drift of electrons in gases – Moscow: Atomizdat. 
– 1977. – 154 p. 

2. Tsendin L.D. Nonlocal electron kinetics 
in gas discharge plasma // UFN. – 2010. – №180. 
– 139 p. 

3. Fortov V.E., Khrapak A.G., Khrapak S., 
Molotkov V.I., Petrov O.F.  Dusty plasmas // 
UFN – 2004. – №174. –P. 495. 

4. Khrapak S.A. // Floating potential of a 
small particle in a plasma: Difference between  
 

Maxwellian and Druyvesteyn electron velocity 
distributions // Phys. Plasm. – 2010. – Vol. 17. – 
P. 104502. 

5. Golant V.E., Žilina A.P., Sakharov I.E. 
Fundamentals of Plasma Physics. – Moscow: Ato-
mizdat. – 1977. – 240 p. 

6. Mayorov S.A. Calculation of electron drift 
in neon at a constant electric field // Brief reports on 
physics LPI. – 2009. – Vol. 10. – P. 22-27. 

7. Antipov S.N., Vasilev M., Mayorov S.A., 
Petrov O., Forts V.E. Plasma-dust structures in the 
He-Kr dc glow discharge // JETP. – 2011. – Vol. 
139. – P. 554-567.  

8. Golyatina R.I., Mayorov S.A. Cha-
racteristics of the electron drift in a constant 
electric field for the inert gases // Applied Physics. 
– 2011. – Vol. 5. – P. 22-27. 

9. Sukhinin G.I., Fedoseev A.V. Influence of 
dust-particle concentration on gas-discharge plas-
ma //Phys. Rev. E. – 2010. – Vol. 81. – P. 016402. 

10. Sukhinin G.I., Fedoseev A.V., Ra-
mazanov T.S., Amangaliyeva R.Zh., Dosbalayev 
M.K., and Jumabekov A.N. Nonlocal effects in a 
stratified glow discharge with dust particles // J. 
Phys. D: Appl. Phys. – 2008. – Vol. 41. – 
P.245207.  

11. Ramazanov T.S., Kodanova S.K., 
Dzhumagulova K.N., Bastykova N.Kh. The new 
method for measuring of dust particles charge in 
glow discharge plasma // EPL. – 2009. – Vol. 96. 
– P. 45004. 

 


	ФИЗИКА и МАТЕМАТИКА 50
	ФИЗИКА и МАТЕМАТИКА 51
	ФИЗИКА и МАТЕМАТИКА 52
	ФИЗИКА и МАТЕМАТИКА 53
	ФИЗИКА и МАТЕМАТИКА 54
	ФИЗИКА и МАТЕМАТИКА 55
	ФИЗИКА и МАТЕМАТИКА 56
	ФИЗИКА и МАТЕМАТИКА 57
	ФИЗИКА и МАТЕМАТИКА 58



