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Dynamic collision frequency of Kelbg-pseudopotential-modelled plasmas 

 
Abstract. The simulation data [1,2] on the dynamic collision frequency (DCF) of hydrogen-like 
plasmas modelled with the Kelbg pseudopotential are treated within the theory of moments with 
local constraints. Additionally, the correlational sum rule which is the second power frequency 
moment of the external conductivity real part is taken into account to express the DCF in terms of 
the Nevanlinna parameter function. The validity of the suggetsed analytic form of the latter is 
tested against the simulation data, while the sum rules are calculated using the Kelbg potential and 
the Ornstein-Zernike hypernetted-chain equations. 
Keywords:strongly coupled plasma, method of moments with local constraints, sum rule, 
Nevanlinna function, dynamic collision frequency. 

 
 
 
Introduction 
 
As it is known, the classical method of 

moments gives reliable resultson the 
reconstruction of some physical quantities such as 
the dynamic structure factor [3,4], i.e., the function 
that must obey some mathematical properties [5] 
satisfing sum rules and correct assymptotic 
behavior. Additioanlly, this method can be 
completed by local constraints, [6-8] and [9]. 
Based on [1, 2] here we try to reconstruct the 
dynamic collision frequencies using this latter 
method of moments with local constraints. But as 
you will see there is a problem occur which we will 
discuss about it further. 

We are interested in strongly coupled 
hydrogen-like plasmas which exist in stellar like 
stars interior [10] and can be detected in the 
devices of thermonuclear fusion [11].We consider 
the simulation resultswhere the modified Kelbg 
potential is used [2]. 

In the first part of the paper we introduce the 
approach and then apply it to the simulated 
physical quantity. 

 
The mathematical background 
 

Consider the mixed Löwner-Nevanlinna 
problem [6-8], see also Ref. [12] for the matrix 
version of the problem. 

Problem 1. Given a set of real numbers 
(��� � � � � ���), a finite set of points ���� � � � � ��� on 
the real axis, and a set of complex numbers 
���� � � � � ��� with non-negative imaginary parts, 
find a positive function �(�)� � � � such that  

 
�  �

�� ���(�)�� = ��� � = ���� � � � ���      (1) 
 

and  
 

�� = lim��� �  �
��

�(�)��
������� �   � = �� � � � ��  �    (2) 

 
The Problem 1 is a mixture of the truncated 

Hamburger moment problem with the 
Löwner-type interpolation problem in the class of 
Nevanlinna functions[13].  

We are interested in the possibility to solve the 
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problem when only a very small number of 
moments and constraints (data at the interpolation 
nodes) is known. 

 
The mixed problem solution  
Solvability and contractive functions 
 
Assume that the set of moments is 

definite-positive and that truncated Hamburger 
moments problem is solvable [6-8] and that there 
exists an infinite set of non-negative measures � 
on the real axis such that  

 
�  �

�� ����(�) = ��, � = 0,1, . . . ,��.      (3) 
 
Then the formula  
 

�  
�

��

��(�)
� − � = − ����(�) � �(�)��(�)

����(�) � �(�)��(�) ,    ���
> 0,    

 � = 0,1,�, �                  (4) 
 

according to Nevanlinna's theorem, establishes a 
one-to-one correspondence between the set of all 
measures �(�) satisfying (3) and the Nevanlinna 
functions �(�) � ℜ , i.e., functions which are 
analytic in the half-plane ��� > 0, continuous on 
its closure ��� = 0 , having in ��� � 0  a 
positive imaginary part and such that 
lim����(�)�� = 0, ��� > 0. 

Polynomials ��������  form an orthogonal 
system with respect to each �-measure satisfying 
(3) and can be found by the Gram-Schmidt 
procedure applied to the basis �1, �, ��, � , �����, 
while ��������  is the corresponding set of 
conjugate polynomials [7]. Notice that the zeros of 
each orthogonal polynomial ��(�) are real and by 
virtue of the Schwarz-Christoffel identity [7] the 
zeros of ����(�)  alternate with the zeros of 
��(�) as well as with the zeros of ����(�). 

To meet the constraints (2) it is enough now to 
substitute into the right hand side of (4) any 
function �(�)  which satisfies the following 
conditions:  

 
�� = �(��) = − ������(��)�����(��)

����(��)���(��) , � = 1, . . , �.  (5) 
 
Note that ���� > 0. Thus Problem 1 reduces 

to 
 
Problem 2 Given a finite number of distinct 

points ��, . . . , ��  of the real axis and a set of 
complex numbers ��, . . . , ��  with positive 
imaginary parts, find the set of functions �(�) �
ℜcontinuous in the closed upper half-plane which 
satisfy conditions (5). 

Each Nevanlinna function �(�) in the upper 
half-plane admits the Caley representation  

 
�(�) = � ���(�)

���(�),            (6) 
 

where  
 

�(�) = �(�)��
�(�)��               (7) 

 
is a holomorphic function on the upper half-plane 
with contractive values, i.e. |�(�)| � 1, ��� > 0. 
Therefore Problem 2 is equivalent to the following 
problem for contractive functions. 

Let � be the set of all contractive functions 
which are holomorphic on the upper half-plane and 
continuous on its closure . 

Problem 3 Given a finite number of distinct 
points ��, . . . , �� of the real axis and a set of points 
��, . . . , ��, 

 
�� = ����

���� , |��| � 1, � = 1, . . . , �.    (8) 
 
find a set of functions � � �such that 
 

�(��) = ��, � = 1, . . . , �.       (9) 
 

Problem 3 is a limiting case of the 
Nevanlinna-Pick problem [7,13] with interpolation 
nodes on the real axis. Its solvability for any 
interpolation data ��, . . . , �� inside the unit circle 
was actually proven in Ref. [14]. The point is that 
the associated Pick matrix is automatically positive 
definite for given contractive interpolation values 
once the interpolation nodes are close enough to 
the axis; this guarantees that the approximate 
Nevanlinna-Pick problem is solvable once the 
interpolation nodes are close enough to the real 
line. Then one applies the Vitali-Montel theorem to 
take the limit as the interpolation nodes go to the 
real line. This implies also that the 
Nevanlinna-Pick problem is solvable even if some 
or all |��| = 1. 

We describe below an algorithm of solution of 
Problem 3 when all |��| < 1, which is a simple 
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modification of the Schur algorithm. An alter-
native algorithm, similar to the Lagrange method 
of the interpolation theory, can be applied if some 
or even all |��| = 1[8]. 

 
Schur algorithm 
 
Note that a function � ∈ �  satisfies the 

condition �(��) = ��, |��| < 1, if and only if it 
admits the representation  

 
�(�) = �(�)���

���(�)��  ,           (10) 
 

where ϕ ∈ � and ϕ(��) = 0. In the case of the 

Nevanlinna-Pick problem, i.e., when �� belongs to 
the upper half-plane, the function ϕ(�) admits the 
representation  

 

ϕ(�) = � � ��
� � ��

�(�)  , 
 

where �(�) is an arbitrary contractive function in 
the upper half-plane. There is no such simple form 
for the contractive function ϕ(�) when �� ∈ ℝ. 

Here we carry out the reconstruction procedure 
using the non-rational functions, in particular, 
using the function suggested in Ref. [8] 

 
  

ϕ(�) = ��(�)exp � �
�� �  ����

����
����
��� ln|� � ��| ��

����� � = ��(�)��(�),             (11) 
 

with a unique free parameter � ∈ (0,1). Here �� 
is any function from � such that  

 
��(��) = ��� = �

��(��)
�����

������
, � = �, � � � , ��  (12) 

 
Such a choice of ��(�)  guarantees the 

verification of all of the conditions (9). Hence 
Problem 3 with � nodes of interpolation on the 
real axis and strictly contractive values of the 
functions to find at these nodes, reduces to the 
same problem but with � � 1  nodes of 
interpolation and modified values at these nodes 
given by (12). Repeating the above procedure 
� � 1  times with a suitable choice of the 
parameter �  and modifying the values of 
emerging contractive functions at the remaining 
points ����, � � � , ��  according to (12), permits to 
obtain some solution of Problem 3. Observe that 
contrary to the Nevanlinna-Pick problem with 
nodes in the open upper half-plane, our Problem 3 

is always solvable if the values of the function to 
reconstruct are contractive at the nodes of 
interpolation. 

Let ���� ∈ �  be a contractive function 
emerging after the � � 1 step in the course of the 
Problem 3 solution by the above method, and let 
��

(���) = ����(��), ��
(�) = ��. It follows from the 

above arguments that should the initial parameters 
��, � � � , �� be strictly contractive, there exists a set 
of solutions of Problem 3 described by the formula  

 
�(�) = �(�)�(�)��(�)

�(�)�(�)��(�),           (13) 
 

where the elements of the matrix of the linear 
fractional transformation (13) are non-rational 
functions constructed as above and �(�) runs the 
subset of all functions from �  satisfying the 
condition �(��) = ��

(���) . This matrix can be 
calculated as

  
 

 ��(�) �(�)
�(�) �(�)� = ∏  ���

���
Ð

���(�) ��
(���)

��
(���)��(�) 1

�, (14) 

 
where numbers �  in matrix factors on the right 
hand side increase from left to right. 

Observe that the simplest choice for the 
function �(�) in (13) is just �(�) � ��

(���). 
 

 Hence, if initial parameters ��, � � � , ��  in 
Problem 3 are strictly contractive, then among the 
solutions of this problem there are non-rational 
functions of the type we consider. 
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The numerical procedure 
 
Since we try to reconstruct certain 

non-negative densities, the solvability of the 
moment problem is not an issue. In each case the 
absolutely continuous non-negative measure with  

 

this density is just one of the solutions of the 
moment problem. 

To apply the Schur-like algorithm described 
above, one has to know not only the values of some 
power moments of the distribution density �(�) 
under investigation,  

 
�� = �  �

�� ���(�)��  ,    � = 0,1, � ,2�  ,    � = 1,2, �,                  (15) 
 

but also the values of the Nevanlinna function at 
the set of points ���, . . . , ���:  

 
�� = �(��) = �. �. �  �

��
�(�)��

����
+ ���(��)  .  (16) 

 

In all cases we considered, we used only three 
non-zero moments, � = 2, and three interpolation, 
� = � ; the latter principal value integrals were 
computed numerically and the orthogonal polyno-
mials were calculated directly: 

��(�)     = 1,    ��(�) = �,    ��(�) = �� � ���,
��(�)     = �(�� � ���),    ��(�) � 0,    ��(�) = ��,
��(�)     = ���,    ��(�) = ��(�� � ��� + ���)

 

 
where ��� = ����� , ��� = ����� . 

 
To find the value of the parameter � � (0,1) of the auxiliary function  
 

��(�) = ��� � �
�� �  

����

����

1 + ��
� � � ln|� � ��| ��

�� + 1�,    

 � = 1,2,�,                        (?) 
 
we made use of the Shannon entropy  

 
� (�) = ������(�, �)ln(�(�, �))��, 

 
maximization procedure [15], where the density 
�(�, �)  is the one reconstructed within the 
algorithm, i.e., the imaginary part (divided by �) 
of the model function obtained by the 
Schur-algorithm procedure. The density �(�, �) 
has no real poles and is positive over the whole real 
axis, hence it is quite easy to solve the maxi-
mization procedure equation: ��(�)��� = 0. 

 
Results and conclusions 
 
To check the quality of the above reconstruc- 
 

tion techniquewe used the simulation data of [2] to 
obtain the dynamic collision frequency. 
Particularly for � = 1, � = ��0 000 �  three 
experimental points were used: t� = 0.4; t� =
1; t� = 1.2. Since the imaginary part of DCF takes 
negative values it was decided to carry out the 
comparison for the real part of the DCF and the 
loss function which is mathematically corect fot 
the method of moments. Precisely, we applied the 
Nevanlinna theorem to the DCF, and expressed it 
in terms of the Nevanlinna parameter function 
�(�; �) reconstructed by the above algorithm. The 
numerical results were compared to the simulation 
data of [2] and the data are presented is figures 1 
and 2. In all figures the the thick lines correspond 
to our results, �� is the plasma frequency. 
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Figure 1 –The real part of the dynamical collision frequency in comparison with the simulation data of [2] at Γ=1, T=350 000 K 
 

 
Figure 2 –The loss function in comparison with the simulation data of [3] at Γ=1, T=350 000 K 

 We can conclude that an algorithm presented here 
per mits to obtain, at least in the cases we consider, a 
quantitative agreement between the simulation data 
on the plasma DCF and loss functions reconstructed 
by a few integral characteristics, the power moments 
and the local constraints.
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