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Dynamic conductivity of Kelbg-pseudopotential-modelled plasmas 

 
Abstract. The obtained results continue our work on the optical properties of Kelbg-pseudopotential-modelled plasmas [1]. 
Since the difficulty of the uncertainty in the determination of the Nevanlinna parameter function is overcome by developing 
a regular method for deriving the Nevanlinna parameter function which essentially stems from the asymptotic behavior of 
the simulated dynamic collision frequency in the classical method of moments, it is possible, on the basis of the dynamic 
collision frequency (DCF) of hydrogen-like plasmas to derive the dynamic conductivities. Here internal and external 
dynamic conductivities, i.e. their imaginary and real parts are presented. Some information on the method of moments 
(MM) is provided. 
Keywords: strongly coupled plasma, method of moments, sum rule, dynamic conductivity, Nevanlinna parameter function.  

 
 

Introduction 
 
The ultimate goal of the last papers [1-6] was to 

check whether the available experimental and 
simulation data satisfy convergent sum rules and 
other exact relations which could be helpful in 
verifying the employed techniques. Simultaneously, 
it was a demonstration of the fruitfulness of the MM 
approach in describing dynamic properties of 
plasmas since the attained agreement with those data 
was indeed quite good. Nevertheless, the uncertainty 
in the determination of the Nevanlinna parameter 
function remains a weakness of the MM approach. In 
[1] this difficulty was overcome by developing a 
regular method for deriving the Nevanlinna 
parameter function which essentially stems from the 
asymptotic behavior of the simulated dynamic 
collision frequency. Then using the obtained results 
it is possible to calculate the imaginary and real parts 
of internal and external dynamic conductivities. The 
plasma parameters considered here are as in[1]. 

It is remarked that the theory of moments permits 
to reconstruct analytic functions, which appear in 
physics as response functions with their specific 
mathematical properties, i.e., the Nevanlinna class 
functions which are analytic in the upper half-plane 
with a positive imaginary (or real) part, from their 
integral characteristics. 

 
Background 
 
It was shown in [7] that the plasma dielectric 

function �(�)  analytic properties strongly depend 
on the sign of the static DF �(0) = lim����(0, �). 
In the long-wavelength limit when the space 
dispersion can be neglected both direct (DF) and 
inverse (IDF) dielectric functions are continuous 
restrictions of the corresponding Nevanlinna or 
response functions �(�, �)  and ���(�, �) , ��� �
0 , to the real axis ��� = ��(� + �0�) = 0 , 
respectively. This implies that both response 
functions satisfy the Kramers-Kronig relations (for 
��� � 0): 

 
�(�) = 1 + �

� �  �
��

���(�)��
��� ,

���(�) = 1 + �
� �  �

��
�����(�)��

��� .
          (1) 

 
Particularly,  

 
���(0) = 1 + �

� lim��� �  �
��

�����(�)��
���� ,        (2) 

 
but due to the parity of the inverse dielectric function 
(IDF), the integral �  �

�� (�����(�)���)�� 
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converges and equals −1. On the other hand, if the 
system static conductivity exists, 
 

�� = lim���lim�������(�, �), 
 

the DF  
 

�(�) = lim����(�, �) = 1 + 4��
� ����(0, �) 

 
diverges when � � 0. Hence, we should and can 
consider the power moments of the loss function 
�(�) = −�����(�)/�: 
 

�� = �
� �  �

�� ���(�)��,    � = 0,�,4�    (3) 
 

whereas the function �(�) = ���(�)/� possesses 
only "positive" convergent moments  
 

�� = �
� �  �

�� ���(�)��,    � = �,4.       (4) 
 

The moments �� and �� coincide and, by virtue of 
the �-sum rule [8], are both equal to the square of the 
plasma frequency: �� = �� = ��� = 4�����/�. 
Comparing the asymptotic expansions of the 
functions ���(�) and �(�) 

 

 
���(�) =  �

� �  �
��

�(�)��
���

�
≅���

�
� �  �

�� �(�) �1 + �
� + ��

�� + ��

�� + ��

�� + ⋯ � �� =

    = 1 + ���

�� + ��
�� + ⋯ �     �(�) ≅��� 1 − ���

�� − ������

�� − ⋯ .
 

 
 

the relation between the fourth moments is easily 
found to be: �� = �� − ��� . The moment ��  has 
been calculated in our previous publications, see, for 
example, [4], and, precisely, for model plasmas 
described by a pseudopotential  

���(�) = 4���

�� ���(�),    �, � = �, �, 
 

can be written as [7]:

 
 

 �� = ���(1 + �),    � = − �
���������

�  �
� �����(�)���(�)�� � 0. (5) 

 
Notice that in a purely Coulomb system 

���(�) = −�  and this correction reduces to 
�������� = ℎ��(0)/3, ℎ��(0) = ���(0) − 1, ���(�) 
being the electron-ion radial distribution function 

[9-10]. The parameter �������� was first evaluated 
in the modified random phase approximation in [11] 
and recently generalized in [12]: 

 

 ����� = �
� ���√Γ�3�Γ� + 4�� + 4Γ�3(1 + �)�����/�. (6) 

 
Dynamic collision frequency 
 
The classical Drude-Lorentz model was ge-

neralized in [13], see also corresponding references 
therein. Precisely, the following long-wavelength 
model expression for the IDF was suggested:  

 

������ (�) = 1 + ���

����������(�) ,    ��� � 0,   (7) 

 

where �(�) is the dynamic collision frequency 
(DCF) defined in a way that the static  conductivity  

 

�� = lim���
�

��� � �
������ (�) − 1� = ���

���(�).    (8) 

 
Let us now, for a while, return to the dynamic 

properties of completely ionized plasmas without 
neglecting the effects of space dispersion. Then the 
IDF ���(�, �) is always a genuine response func-
tion which must satisfy the Kramers-Kronig relation  

 
���(�, �) = 1 + �

� �  �
��

��  ���(�,�)
��� ��  ,    �m  � � 0, (9) 

 
with the limiting value at � = 0 understood as 
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 ���(�, �) = 1 + �

� �. �. �  �
��

�������,���
���� ��� + ������(�, �). (10) 

 
Particularly, since the IDF imaginary part is an 

odd function of frequency, it should vanish at 
� = 0, 

 
���(�, 0) = 1 + �

� �. �. �  �
��

�����(�,�)
� ��.   (11) 

 
We assume that the static dielectric function 

�(�, 0)  value exists and is finite. Then, we can 
rewrite the previous expression as [7] 

 
���(�, 0) = 1 + �

� �. �. �  �
� �����(�, �) ���

��    (12) 
 
and take into account the inequalities  
 

���(�, �) ≥ 0,    �����(�, �) ≤ 0,     (13) 
 

which follow for � ≥ 0  from the 
fluctuation-dissipation theorem [8]. 

The following inequalities,  
 

���(�, 0) ≤ 1 � �(�, 0) ≥ 1,    �(�, 0) < 0,   (14) 
 
are direct consequences of (12) valid for � � 0. 
The situation changes if the case � = 0  is 

considered. Indeed, instead of (12) the following 
conditions for both the static IDF and DF must hold: 

 
�(0) = 1 + �

� �. �. �  �
� ���(0, �) ���

�� ,
���(0) = 1 + �

� �. �. �  �
� �����(0, �) ���

�� ,
 (15) 

 
so that, by virtue of (13), we have, in addition to (14), 
that  

 
���(0) ≤ 1 � �(0) ≥ 1,          (16) 

 
and, thus, �(0)  should never take negative values. 
Consequently, when � � 0, the causality conditions 
corresponding to the action of the external charge on 
the system do not preclude the static dielectric function 
to be negative, only the values between 0 and 1 turn 
out to be forbidden. If the limit � � 0  is initially 
taken, then, the causality principle prohibits the static 
DF to take values smaller than 1 . Indeed, it was 
already shown [9] that �(0) = ∞  or ���(0) = 0 
which are due to the existence of the static 
conductivity. 

The integrand in the principal value integral (11) 

has a removable singularity, which means that it 
converges as a usual Riemann integral. The latter is 
actually the zero power moment of the loss function 
ℒ(�, �) = −�����(�, �)�� , which is an even 
function of the frequency well defined at � = 0: 

 
��(�) = − �  �

��
�����(�,�)

�� �� = 1 − ���(�, 0), (17) 
 

and the first of the inequalities (14) implies the 
positivity of ��(�) with ��(� = 0) = 1. 

Even if the interparticle interaction potential is 
different from the bare Coulomb one and can be 
described by an effective potential, the second power 
moment of the loss function remains unchanged due 
to the �-sum rule [7-8]and is equal to the square of 
the system plasma frequency: 

 
�� = �

� �  �
�� ��ℒ(�, �)�� � ��� ≈ ������

� .  (18) 
 
Hence, the moment sequence ��1 −

���(�, 0)�, 0, ����  is positive and the moment 
problem [14] of reconstruction of both the loss 
function and the IDF ���(�, �) is solvable [15]. The 
non-canonical continuous solution of the Hamburger 
moment problem in this case is easily found from the 
Nevanlinna formula [15]: 

 
���(�, �) = 1 + ���

������(�)����(���) ,    ��� ≥ 0. (19) 
 
Here ���(�) = �����(�)  and ��(�� �)  is the 

Nevanlinna parameter function which belongs to a 
Nevanlinna class function such that along any ray in 
the upper half-plane, lim�����(�� �)�� = 0. In the 
long-wavelength limiting case ��(0) = ��  model 
expression (7) is recovered if we choose ��(�� 0) =
��(�) = ��(�). Moreover, for any � expressions (7) 
and (19) share the asymptotic expansion  

 

���(�, � � ∞) ≅ 1 + ���

�� + � � �
���,      (20) 

 
which implies that both expressions satisfy the 
�-sum rule (18). 

There are still some distinctions to be pointed 
out: (i) All three sum rules ��1 − ���(�, 0)�, 0, ���� 
are automatically satisfied by expression (19) for any 
proper choice of ��(�, �) , while expression (7) 
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might satisfy the sum rules �1,0, ���� only for an as 
yet unknown DCF; for a constant �(�) = �(0): =
� > 0, these sum rules are satisfied. (ii) Expression 
(19) is easily generalized for the moment sequence  

 
��1 − ���(�, 0)�, 0, ���, 0, ���(�)����,   (21) 

 
i.e., the fourth sum rule which accounts for the 
correlations in the system, 
��(�) = �  �

�� ��ℒ(�, �)���� = ���(�)���  is 
satisfied. It is, however, unclear how the DCF 
�(�) = ���(�) + ����(�) could be chosen so that 
at least for � = 0, we had 

 
�
� �  �

��
������(�)���

�����������(�)�� = ���(0)���.    (22) 

 
(iii) Notice that for a constant collision 

frequency, the l.h.s. of (22) diverges, and its 
convergence might be guaranteed only if  

 
�(� � ∞) � ����� + ������      (23) 

 
with �� > 1 and �� > −1. 

The fourth power moment  
 

��(�) = 1
� �  

�

��
��ℒ(�, �)��: = ���(�)��� 

 
has been known for a long time [6,10,16], ��(0) =
�� = ���(1 + �). 

The non-canonical solution of the Hamburger 
moment problem [15] for the positive sequence 
�1,0, ���, 0, ���(1 + �)� can be written as  

 

���(�) = 1 + ��������(�)�
��������(���)����(�)��������.  (24) 

 
The question to be answered now is whether the 

model expression for the IDF (7) satisfies not only 

the sum rules �1,0, ���� , but also the fourth one, 
�

��(1 + �).Numerical integration of the simulation 

data of [17] shows that the moment conditions (21) 
are satisfied with a high degree of accuracy. On the 
other hand, it is indeed interesting whether the 
Nevanlinna parameter function ��(�)  can be 
chosen such that expression (7) virtually turns into 
expression (24). It is straightforward to demonstrate 
that for the generalized Drude-Lorentz model IDF to 
satisfy the above five sum rules, the following 
relation between the DCF �(�) and the Nevanlinna 

function ��(�) should hold: 
 

�(�) = �����
����(�).                      (25) 

 
The DCF �(�) was studied, in a quite detailed 

way, for moderately coupled hydrogen plasmas. To 
describe these results in the context of relation (25), 
two model expressions are proposed below for the 
function ��(�). 

 
Nevanlinna parameter functions 
 
Being a Nevanlinna class function which grows 

slower than |�| at � � ∞, the parameter function 
��(�) is determined by the Riesz-Herglotz formula 
[15,18] as  

 
��(�) = �  �

��
�(�)��

��� ,           (26) 
 

where the distribution density �(�) ≥ 0  must be 
such that 

 

�  
�

��

�(�)��
1 + �� < ∞. 

 
The main drawback of the MM is that the 

Nevanlinna parameter functions lack any 
phenomenological sense, i.e, they are not directly 
measurable quantities. Relation (26) is not a 
definition of the function ��(�)  as a measurable 
characteristic since the DCF is not measurable either. 
Thus, to reproduce the data on the DCF obtained in 
[13] and [17], one might try to determine an adequate 
distribution density �(�) from the asymptotic form 
of the DCF. Precisely, the values of the exponents 
�� and �� are found in [17] and it turns out that for 
the Kelbg potential �� ≈ 3.5 while �� ≈ 1, as for 
the Coulomb potential. For example, the asymptotic 
behavior is thoroughly reproduced by assuming  

 
��(�) = �

� |�|�,                (27) 
 

where �, and � are real parameters to be found. It is 
presumed that � is negative, but the integral in (26) 
converges only if � � (−1,0). Then  
 

���(�)
��

=
��� �

���
�

�������
� �������

� �
.                       (28) 

The weak point of such a model expression is 
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that the corresponding DCF vanishes at � � 0. 
Alternatively, we can assume  

 
������ � ��

���������,                      (29) 
 

where the positive parameter � is to be determined 
from the relation (25) at � � 0:  

 
��0� � ������.               (30) 

 
In both cases the real part of the DCF decreases as 

���������
 whereas the DCF imaginary part goes to 

zero slower, namely as ��������
. Model expression 

(29) guarantees a finite positive value for the 
measurable parameter ��0� , but deviates from the 
asymptotic behavior for the Kelbg pseudopotential. 

 
Dynamic conductivity and numerical results 
The fluctuation dissipation theorem and the 

lingitudinal polarization function gives the relation 
between the internal conductivity and the dynamic 
colission frequencyin the long wavelength limit [17] 

 

������� � ���

��������.                      (31) 
 
The internal and external conductivities are clo-

sely related by the expression [4] 

������� � �������
�����

� �������.                      (32) 

 
The computed dynamic conductivities (31), (32) 

have real and imaginary parts. The comparisons 
between them and the simulation results [13] are 
presented on figures 1-4. 

 

 
Figure 1- Real part of the internal dynamic conductivity 

obtained by (31) – full line compared to the simulation data 
[17] – dashed line 

 
Figure 2 – Imaginary part of the internal dynamic 

conductivity obtained by (31) – full line compared to the 
simulation data [17] – dashed line 

 
 

 
Figure 3 – Real part of the external dynamic conductivity 

obtained by (32) – full line compared to the simulation data 
[17] – dashed line 

 

 
Figure 4 – Imaginary part of the external dynamic conductivity 

obtained by (32) – full line compared to the simulation data 
[17] – dashed line 

 
Conclusions 
 
Using a model for the Nevanlinna parameter 

function [1] the plsma dynamic conductivities were 
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calculated within the moment approach and 
compared to the simulation data whichwas based on 
the application of the Kelbg pseudopotential to 
impose quantal characteristics on the MD method 
[17]. It is seen that the results on internal dynamic 
conductivitie agree with the simulation data quite 
well for both conductivities.  
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