International Journal of Mathematics and Physics 14, No2 (2023)

IRSTI 28.31.44

https://doi.org/10.26577/ijmph.2023.v14.i2.05

Faisal Yasin!, Zeeshan Afzal"” 2 , Muhammad Sarmad Arshad?, And Muhammad Rafaqat'

"Department of Mathematics, University of Lahore, Lahore Campus, Pakistan.
2Lahore Garrision University, Lahor, Pakistan.
*e-mail: zeeshan.afzal@math.uol.edu.pk
(Received 30 November 2023; received in revised form 06 December 2023, accepted 12 December 2023)

An analytical approach for solving fractional financial risk system

Abstract. This article introduces an innovative analytical method tailored to address the
complexities of non-linear FFR (’fractional financial risk’) models. The LRPS (’Laplace residual
power se- ries”) approach non-linear FFR models empowers risk analysts to more accurately
assess portfolios and predict potential losses span- ning diverse risk categories. These encompass
credit risk, market risk, model risk, liquidity risk, and operational risk. By expand- ing the array
of techniques for risk modeling, this study offers a valuable asset for refining risk assessment and
management strate- gies across these distinct risk domains. Through the utilization of the LRPS
approach, this methodology rapidly generates accu- rate solutions, providing an efficient pathway
for approximating the intricate non-linear FFR models intrinsic to risk modeling. By means of
numerical simulations and graphical representations, the article effectively demonstrates the
efficacy of the LRPS technique. This study not only offers a practical and time-efficient tool for
fi- nancial risk analysis but also contributes valuable insights to the advancement of novel

techniques within the realm of financial risk management.
Key words: Fractional Financial Risk model, Risk assessment, Risk management strategies,

Complex financial landscapes

Introduction

In the economic field, managing financial risk is
crucial for economic entities to ensure their
financial stability and avoid potential losses.
Financial risk refers to the potential of suffering
losses due to unpre- dictable changes in endogenous
factors in financial or investment activ- ities, which
can result in erratic fluctuations. It is, therefore,
essential for businesses and financial institutions to
understand financial risk and develop effective
strategies to manage it [3, 1]. Financial risk can arise
from various sources, including market risk, credit
risk, operational risk, and liquidity risk. Market risk
arises from changes in market conditions, such as
fluctuations in interest rates, currency exchange
rates, or commodity prices. Credit risk arises from
the possibility of borrowers defaulting on their
loans, and operational risk refers to the risk of loss
resulting from inadequate or failed internal
processes, people, and systems. Finally, liquidity
risk arises when an entity is unable to meet its
financial obligations as they become due [8]. To

© 2023 al-Farabi Kazakh National University

manage financial risk effectively, economic entities
must understand the sources of risk, assess their risk
exposure, and implement appropri- ate risk
management strategies. This involves using
financial instru- ments, models, and algorithms to
measure and manage risk exposure, as well as
monitoring and reporting tools to track and
communicate risk metrics to stakeholders. Effective
risk management helps busi- nesses and financial
institutions avoid potential losses, enhance their
financial performance, and maintain the trust and
confidence of their investors and customers[4]. In
conclusion, understanding and managing financial
risk is crucial for economic entities to ensure their
financial stability and avoid potential losses. By
developing effective risk management strategies,
businesses and financial institutions can mitigate
financial risks and maintain their competitiveness in
the dynamic and interconnected global economy/[5].

Preliminaries In this section, we revisit
important definitions and results pertaining to
Caputo’s fractional derivatives and fractional
Laplace transform. This includes recalling essential
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theories such as the fractional Taylor’s formula as
noted in previous works by [15].
2.1. Definition. The CFD [2] of function A(?) as:

1 ft M (&)
[(n-p) -0 (t=§)P+1—m

DFh(t) = as,t>0. (1)

The LRPS approach offers a solution for linear
and nonlinear FDEs by determining the coefficients
of the fractional power series approximate solution.

The system of FDE in the context of Caputo’s
definition can be expressed as follows:

Dtph(t) = gi(t; hl(t)! hZ(t)! ey hn(t));
t=>0,p€(0,1]. @)

Let h(t) represent the set of smooth functions, gi
denote the linear as well as non-linear functions in the
context described.

Initially, we commence the process by applying
the Laplace transform to both sides of the system in
the following manner:

LD h(D)] =
= L[gi(t, h1(©), o (0), ..., by (D))] ?3)
By using the formula

LD’ h()] = sPH(s) —s®PDhr(0)  (4)

by setting G(s) = L[gi(t, hi(?), ha(?), ..., ha(?))] and
using the initial conditions, system can be found as:

an , 1

H(s) = <t G(s), (5)

wheren=1, 2, 3... Subsequently, the Laplace
solution is presented as follows:

H(S)_ZTL 0 np+1's>0 (6)

Since a, = limy,_¢ sH(0). The k-th Laplace series
solution is given as:

H¥(s) =2+ 3k 5is, s >0 (7)

And the /-th Laplace residual functions is defined
in the following man ner:

L[Res,(H(s))] = H"()————G(s) (8)
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The coefficients a, can be determined by solving

limg——o ¥ L[Resi(H(s))] = 0,
fork=1,23,..and 0 <p< 1.

Finally, in the concluding step, we proceed with
the inverse Laplace to determine the A-th LRPS
approximate solution.

3. Fraction Financial Risk Model

We are presented the fractional financial risk
model with Caputo’s approach as follows:

D!R*(t) = —g(U* — R*) + U*V",
DJU*(t) =rR*—U*—R'V* 9)
D/V*(t) =R'U*—bV*

subject to initial conditions,

R*(0) = Ry, U (0) = Uy, V*(0) = Vg (10)

In this model, R*, U *, and V * represent the
occurrence value, analy- sis value risk, and control
value risk in the current market, respectively. Here, ¢,
r, and k = 1- b denote the analysis risk efficiency,
transmission rate of previous risk, and distortion
coefficient of risk control, respectively.

4. Laplace RPS solution of Fraction Financial
Risk Model

We will now use the LRPS approach to find the
approximate solution for the Fractional Financial
Risk Model (9).

R*
R(s) =2~ L [0(s) ~ R +
1
LI UG (5)
U(s)—U—S—— () -2
—S—yL[ 1R(s)L 1V(s)] (11)
V(s)==2— —V(s) +5 L[L‘lR(s)L‘lV(s)]

Now, we are using the assumption of 4-th series
Laplace solutions of model (11) is as follows:

k
k —
Re(s) =20 4 DY s

n=1
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U,
Uk(s) = °+2n 1 ny+1,s>0 (12)

- k
k _ O Cn
V) =2+ ) 5> 0
n=1
The convergence of the system (12) is similar as

discussed in [7]. The coefficients a,, b, and ¢, can be
computed as:

L[ResgR(s)] = R¥(s) — R?(’; - siy [U*(s) — R*(s)] +

+SlyL[L‘1Uk(s)L_1Vk(s)]
Uy r
L[Res,U(s)] = U¥(s) —— — —=R¥(s) +
s sY

Uuk(s) 1 _
L

LRE(S)L™IVER(s)]

Vo b
=VE(s) =2 - VEs) -

IRE(S)L™IV¥(s)]

L[Res;V(s)]
1

_S_YL[L_

(13)

Here for the value of k=1, 2, 3..., we can solve
the system (13). The value of coefficients a,, b, and
¢n can be computed by using these formula’s:

lim s¥*1 L[Res (R(s))] =

Ss—00

= 0; lim skr+1 L[Res; (U(s))] =
= 0; Sll_>r£10 sk+1 [[Res, (V(s))] = 0;

a; = {Uq + UgVy = ¢Ry, by =

= 1Ry — Us — ULVe, ¢cq = RGVE — bV§
a; ={by + c,Ug —day, by =
=ra; — b1 + ClUS - b1V0, Cy =

=c Ry +aVy — by
= ¢b tou; 4LV D
az = {by —{ay + c;Uy Fz(y+1)cl 1
+b2V6k, b3 = Taz - b2 - CZUS - b1C1 - szJ, C3 =

_ % x , T2y+1)
=Ry + a,Vy + 2o — bc, , and so on.

a1

The Laplace series solution of model (11) is
given by:

(Uo + UV — {Ry
71 +

(14) R(s) = ?
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{by +c Uy — {aq
+ $2y+1

+<{b2—6a2+C2U6‘+

r2y+1)
r2(y + 1)

1
+ szo>m+...

U0 TRS - Uy — UgVy
U(S) sy+1
Tal - bl + ClUS - b]_VO
g2y +l +
1
+(ra, — b, — c,Uy — bic; — byVy) ——— e +..

VO RSVJ —bVy ¢ Ry +a Vg — bey

V(s) =-= SY+1 §2Y+1
i ., Ty +1)
<C2R0 + a2V0 malcl

1
- bCz m-i_. -

Taking inverse Laplace transform on both sides
of model (14), we have the final solution:

w4y — pr 4 CUs+UgVo—¢RoIEY
(15) R*(8) = R + =22

((by + c,Ug — a)t¥
ry+1)

. ry +1)
+| by —{az + ;U +mc1 1
t3v
+ b Vg |+
2 °> Gy + 1)
(rRg — U — UgVe)t”
Us(t) =05+
(T'a1 - b1 + ClUS - b1V0)t2y
ry+1)
t3Y
+(T‘a2 - bz - CzUE)k - blcl - sz;)m'{'
(RyVS — VLY
V() =Vy +
(c1RS + a Vg — bey)t?
ry+1)
. . 2y +1)
+ CZRO + anO + malcl

t3v
—+
CZ) rGy + 1)
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Numerical Results

In this section, we give mathematical outcomes
for the solution of the fractional order FFRS (9) to
exhibit the presentation and the efficiency of the
LRPS technique in taking care of such models.
Utilizing this proposed technique, we get an
approximate solution for the FFRS (9) as a fast
convergent series. The surmised solutions are
introduced in illustrations as a graphs and tables
arranged upsides of R*(¢), U *(¢) and V *(f). The FFRS
(9) for particular values of (=10, »=28 and b = 8/3
as follows:

D}R*(¢t) = —10(U* = R*) + U'R", (16)

DYU*(t) = 28R* — U* — R*V*,

D]V*(t) = R*U* — 8V*/3

we are using IC’s are R*(0) = 20, U *(0) =20 and V'
*(0) = 20. Here, y indicates the fractional derivative
order and 0 <y < 1. We are using the LRPS
technique in FFR (16) and calculated all series
solutions R*(¢), U *(f) and V *(¢).

In the Figures 1, 2, 3 and Table 1 shows the
behavior of LRPS-solution at the fractional order y =
1 over the interval [0, 0.5]. From these graphical
outcomes, obviously the approximations got by the
LRPS strategy are very efficient and the effectiveness
can accomplished use moderately tiny number of
terms in our example. However, The en- hancement
of efficiency can be significantly magnified through
the aug- mentation of terms within the power series.
These graphs also shows that the presented method
can predict the nature of compartments R*(¢), U *(¢)
and V +(¢) accurately for the region under
consideration, where the behavior of such
approximations are in good agreement with each
other.

Tablel — Approximate solution of R*(t;), U*(t;)and V*(t;)V *(t) for different values of t using LRPS.

ti R*(t) U () Vi(t)

0 20 20 20
0.1 213.285 22.227 225.848
0.2 1239.61 -350.05 1178.61
0.3 3888.7 -1623.27 3485.09
0.4 8950.25 -4323.87 7752.13
0.5 17214 -8978.29 14586.5

R

Figure 1 — Graphical comparison between LRPS Approximation solution of R*(¢) for different values
of y=0.2, 0.4, 0.6, 0.8 in 3D and 2D view shown in (a) and (b) respectively.
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Figure 2 — Graphical comparison between LRPS Approximation solution of U *(¢) for different values
of y=0.2, 0.4, 0.6, 0.8 in 3D and 2D view shown in (a) and (b) respectively.

Conclusion

This study introduces an innovative analytical
method, employing the LRPS approach, to efficiently
address non-linear FFR models. The method’s
demonstrated effectiveness, supported by numerical
simula- tions and graphical representations,
underscores its practical value. By expanding the
toolkit for risk modeling, the research enhances risk
assessment and management strategies across diverse
risk categories, contributing to more accurate and
resilient financial systems. By en- hancing the
repertoire of techniques available for risk modeling,

this research contributes to the refinement of risk
assessment and man- agement strategies across
various risk categories, including credit risk, market
risk, model risk, liquidity risk, and operational risk.
This inno- vative approach holds implications not
only for the financial sector but also for broader
applications within risk analysis in diverse fields.
Fur- thermore, this study’s forward-looking insights
highlight the potential of advanced methodologies to
navigate complex financial landscapes and promote
effective risk management practices.

Conflict of Interest The corresponding author
states that there is no conflict of interest.

0
Figure 3 — Graphical comparison between LRPS Approximation solution of ¥ *(¢) for different values
of y=0.2, 0.4, 0.6, 0.8 in 3D and 2D view shown in (a) and (b) respectively.
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