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On a non-local problem for system of partial differential equations
of hyperbolic type in a specific domain

Abstract. The non-local problem for second order system of partial differential equations of hyperbolic type is
studied in the specific domain. For solving this problem we use a functional parametrization method. This method is
an extension of Dzhumabaev’s parametrization method to a partial differential equations of hyperbolic type. We
introduce a parameter-function, expressed as the unknown function's value at the characteristics t = 0 within the given
domain. This transforms the nonlocal problem into an equivalent parameterized problem, involving the Goursat
problem for a system of partial differential equations of hyperbolic type and an additional relation based on the
functional parameter. Subsequently, starting from the additional condition and the consistency condition, we formulate
the Cauchy problem for a system of differential equations with respect to the unknown parameter-function. We develop
an algorithm for solving the parameterized problem and demonstrate its convergence. Additionally, we derive
conditions for the existence and uniqueness of a solution to the parameterized problem. Unique solvability conditions
for the nonlocal problem for second-order system of partial differential equations of hyperbolic type in a specific

domain are established in terms of the initial data.

Key words: non-local problem, partial differential equations of hyperbolic type, parameterized problem,

Dzhumabaev’s parametrization method, solution.

1 Introduction and statement of problem

Nonlocal problems for partial differential
equations of hyperbolic type involve integral or
nonlocal operators in addition to the usual differential
operators. These nonlocal conditions can arise in
various physical and mathematical contexts and often
have applications in modeling phenomena with
memory effects, long-range interactions, or nonlocal
interactions (see [1-3] and references cited therein).
Non-local problems for hyperbolic equations also
have applications in various fields, including physics,
biology, and finance.

Solving non-local problems for hyperbolic
equations often involves a combination of numerical
and analytical methods, as the presence of nonlocal
conditions makes direct application of standard
numerical techniques more challenging. Here are
some methods commonly used for solving nonlocal
problems associated with hyperbolic equations:
Characteristic methods, Analytical approaches,
Finite difference methods, Finite element methods,
Spectral methods, Integral equation methods,
Operator splitting techniques, Inverse problems
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techniques and etc. The choice of method depends on
the specific form of the non-local condition, the
characteristics of the hyperbolic equation, and the
desired accuracy of the solution. Often, a
combination of methods or hybrid approaches may
be necessary to efficiently and accurately solve non-
local problems for hyperbolic equations [1-7].

A method of functional parametrization for
solving nonlocal problems for hyperbolic equations
with mixed derivatives was proposed in works [8-
10].

This method is a modification of Dzhumabaev’s
parametrization method [11], it proposed for solving
BVPs for ODEs.

This approach facilitated the determination of
conditions under which non-local problems for
systems of hyperbolic equations are solvable,
expressed in terms of the system coefficients and
boundary matrices. Additionally, algorithms for
discovering approximate solutions were devised,
showcasing their convergence towards the precise
solutions of the investigated issues. These findings
were then applied to non-local problems with
integrals and multi-point conditions [12-16],
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involving impulsive effects and delayed arguments
[17-19], and addressing systems of hyperbolic
equations with loads and piecewise-constant
arguments [20-24].

In this current article, we will expand the
application of the functional parametrization method
to address a novel class of non-local problems for
second-order hyperbolic equation systems within a
specific domain

Q;={(t,x):0<t<d(x),0<x<w} Here
the function d(x) is definite positive continuous on
[0, w].

We consider the non-local problem for system of
partial differential equations of hyperbolic type in the
next form:

0%u ou ou
Frrr A(t, x) ™ + B(t,x) % + C(t,x)u+
+£(t,x), (t,x) € Qq, (1)
PG aug(;' x) LS au(da(:cc),x) — o),
x € [0, w], ()
u(t,0) = yY(t),t € [0,d(0)]. 3)

Here u(t, x) = col(uy(t, x), u,(t, x),

o, Up(t,x)) is desired function, the matrices
A(t,x),B(t,x), C(t,x) on dimension (n X n) and
the vector function f(t,x) on dimension n are
continuous on 4, the (n X n) matrices P(x), S(x)
and the n vector function ¢(x) also are continuous
on segment [0, w],then vector function (t) is
continuously differentiable on segment [0, d(0)].

A classical solution to the non-local problem (1)-
(3) is a continuous on Qg function u*(t,x) €
C(Qq,R™) having continuous partial derivatives
ou(tx) odu(tx) 0%u(tx)

ax ’ ot ’ 0xot
partial differential equations of hyperbolic type (1)
for all (¢, x) € Q4, nonlocal condition (2) for all x €
[0, w] and condition on the characteristics (3) for all
t € [0,d(0)].

, that satisfies to system of

2 Reduction to an equivalent problem
We introduce a parameter-function as follows:
A(x) = u(0,x). Then we replace the unknown

function u(¢, x) by sum of functions:

u(t,x) = z(t,x) + A(x) for all (t,x) € Qg .
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The problem (1)-(3) is reduced to the equivalent
problem:

0%z 4 0z 0z
EErhe (t,?c)a + B(t,x)a + C(t,x)z +
+A(t, x)A(x) + C(t, x)A(x) + f(t,x),
(t,x) € Qq, “4)
z(0,x) = 0,x € [0, w], ®)

z(t,0) = Y(t) —¥(0),t € [0,d(0)],  (6)

. 0z(d(x),
PG + SCONIG) + 56 XD _

x € [0, w]. (7)

From consistence condition at the point (0,0) we
have

A(0) = ¥(0). @®)

A solution to parameterized problem (4)-(7) is a
functions pair {z*(¢, x), A*(x)} with a continuous on
Q, vector function z*(t,x)having a continuous
az*(t,x) 9z*(tx) 98%z*(tx)

ax ’ a9t > oxat
a continuously differentiable on [0, w] parameter-

function A*(x), if it fulfills to parameterized system
of partial differential equations of hyperbolic type (4)
for all (¢t,x) € Qg4, characteristics conditions (5) for
allx € [0, w] and (6) for all t € [0, d(0)], and
additional relation (7) for all x € [0, w].

The understanding of the equivalence between
problems (1)-(3) and (4)-(7) is as follows.

Let function u*(t,x) be a solution to non-local
problem (1)-(3), then the functions pair
{z*(t, x), 1" (x)}, where

partial derivatives , and with

z*(t,x) = u*(t,x) —u*(0,x),
A (x) = u"(0,%),
is a solution of parameterized problem (4)-(7).
Vice versa, if a functions pair {Z(t, x), A(x)} be a
solution to parameterized problem (4)-(7), then the

function (¢, x) defined as

ii(t,x) = 2(t, x) + A(x),
(t,x) € Qq,

is a solution of the initial non-local problem (1)-(3).
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In contrast to non-local problem (1)-(3),
parameterized problem (4)-(7) has characteristics
condition (5) at the line t = 0.

At  fixed parameter-function A(x) the
parameterized problem (4)-(6) is the Goursat
problem for system of partial differential equations of
hyperbolic type. For determining an unknown
parameter-function A(x) we have additional relation
N.

Let us introduce

0z (t,x)
ox °

0z (t,x)

v(t,x) = w(t,x) = 5

Assume that parameter-function A(x) is known
for all x € [0, w]. Then the Goursat problem (4)-(6)
will be equivalent to the three system of integral
equations in the following form:

v(t, x)=f0t{A(T, x)v(t,x) + B(t,x)w(t,x) +
C(t,x)u(t,x) + f(r,x)}dr +
fOtA(T, x)dt A(x) + fot C(z,x)dt A(x), 9)

w(t, x)=[; (A, v(t,§) + Bt Hw(t, &) +
C(t O, + f(6,}dE + P(©) +
[y TAGEOAE + (6, O)A®)]de,  (10)

2(t,%) = [y w(z,x) de+ () —(0).  (11)

From (9) we find v(d(x), x) and substitute it in
(7) instead of W . Then, we have a system of

differential equations with respect to A(x):

Q()A(x) = —=L(x)A(x) — F(x) —

—G(x,v,w,z), x € [0, w],

(12)

where

Qx) =
= P() + S(x) + S(x) f
0

d(x)
A(t, x)dt,

d(x)
L(x) = S(x)f C(t,x)dr,
0

G(x,v,w,z) =

d(x)
S(x) f A(t, x)v(t, x)dt
0

a(x)

+S(x) f B(t,x)w(t, x)dt
0
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d(x)

+ S(x) f C(t,x)z(t,x)dr,
0

d(x)
F(x) =5() f (T, x)dt — @(x).
0

The system of differential equations (12) and
initial condition (8) give us the Cauchy problem for
first order differential equations according to
parameter-function A(x) for all x € [0, w].

As a result, we derive a closed system that
incorporates the Goursat problem for the hyperbolic
equations system (4)-(6) and the Cauchy problem for
the system of differential equations (12), (8) with the
aim of determining the functions pair {z(t, x), 1(x)}.

3 Algorithm

The function z(t,x) with its partial derivatives
v(t,x) and w(t,x) are unknown together with
parameter-function A(x)and its derivative A(x).
Problems (4)-(6) and (12), (8) are interconnected.
The Goursat problem (4)-(6) is contingent on the
parameter-function A(x). The Cauchy problem for
system of differential equations (12), (8) is
contingent on the unknown functions z(t, x), v(t, x)
and w(t, x).

Hence, to find a solution to the parameterized
problem (4)-(7), an iterative process is employed,
guided by the following algorithm.

Step 1. (a) Assume that z(t,x) = P(t) —

P (0),v(t,x) = 0 and w(t, x) = ¥ (t) in the system
(12). Further, we suppose that the (n X n) matrix
Q(x) is invertible for all x € [0, w].The Cauchy
problem (12), (8) has a unique solution is a first
approximation for parameter-function A(x):

AV (x) = U U~ (0)y(0) —
~UG) [ U OF @ -
0
U6 [ U6 (5,0, @9
0
— p(0))dg,

x € [0, w],

(13)

Here the (n X n) matrix U(x) is a fundamental
matrix to system of differential equations

Alx) = =071 (x)L(x)A(x), x € [0, w].
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We can also determine the first approximation for

A (x):

AW (x) =
—Q 7 ()L)AD (x) = Q7 (x) F(x) —
—Q ' ()G (x,0,4 (8), Y (&) — ¥(0)),
x € [0, w], (14)

(b) Using the founded A (x) and AV (x), we
solve the Goursat problem (4)-(6) for A(x) =
AM (x) and A(x) = AW (x) .

We have systems of integral equations (9)-(11)
and find a first approximations for z(t, x), v(t, x) and
w(t, x) are the functions z(V (¢, x) , v (¢, x) and
wD(t,x) for all (t,x) € Q.

Step 2. (a) Assume that z(t,x) =
zO@,x),v(t,x) =vP(,x) and w(tx) =
w®(t,x) in the system (12). The Cauchy problem
(12), (8) has a wunique solution is a second
approximation for parameter-function A(x):

AD () = U U= (0)P(0) —
UG f UL E)Q EF(©)dé —
0

U(x) f xu-l(e)Q-l(aG(e.v@,w(”.zm)d&
0
(15)

x € [0, w],

We can also determine the second approximation
for A (x):
@) =
—Q M (X)L)AP (x) = Q7 (x) F(x) —
—Q_l(x)G(x, v W@, Z(l)),
x € [0, w], (16)

(b) Using the founded A® (x) and 1@ (x), we
solve the Goursat problem (4)-(6) for A(x) =
A@ (%) and A(x) = 1@ (x) .

We have systems of integral equations (9)-(11)
and find a second approximations for z(t, x), v(t, x)
and w(t,x) are the functions z®(¢,x)
v@(t,x) and wP (¢, x) for all (t,x) € Q.

And so on.

Step k. (a) Assume that z(t,x) =
z&=D (¢, x),v(t,x) = v&D(t,x) and w(t,x) =
w®*=1D (¢, x) in the system (12). The Cauchy problem
(12), (8) has a unique solution is a kth approximation
for parameter-function A(x):
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A9 (x) = U()U~H(0)y(0) —
UG f UL(E)QL(E)F (§)dE — U(x) +
0

[ @01 @6 (6, &, wkD, 70-D) g
0

x € [0, w], (17)

We can also determine the kth approximation for
1 (x):

A0 (x) =
QM IL)AM () = Q7 (x) F(x) —
—Q ()G (x, D, wk-D, Z k=D,
x € [0, w], (16)

(b) Using the founded A% (x) and 1) (x), we
solve the Goursat problem (4)-(6) for A(x) =
A0 (%) and A(x) = 1 (x) .

We again have systems of integral equations (9)-
(11) and find the Ath approximations for
z(t,x),v(t,x) and w(t,x) are the functions
z® (¢, x) , v® (¢, x) and wB (¢, x) for all (¢,x) €
Qu.k=12,...

4 Main result

Introduce a notations

alx) =

Sz S T

M= max (|A(t,x]| +[B(, x]| HIC (& x]I,
(t,x)eQq

y(0) =107 (I, B = xrer[lgﬂlQ_l(X)L(X)l.

Theorem 1. Assume that the matrix Q(x) on
dimension (nxn) is reversible for all x € [0, w] and
the next inequality is hold.:

q(x) =y () [ISC)Il M max {5, T, 5T} *
w{e“(x)‘g -1- a(x)c?}eﬁ“’ <{<1,

where { — const.

Then the functional sequence of pairs
z®t,x), A ¥ (x)}, k €N, determined by the
algorithm, converges to {z* (t, x), A*(x) } is a solution
to problem (4)-(7).

Proof of the Theorem 1 is based on algorithm
above and is similar to proof of Theorem 1 in [16].
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From equivalence of problem (1)-(3) and (4)-(7),
we obtain

Theorem 2. Assume that the matrix Q(x) on
dimension (nxn) is reversible for all x € [0, w] and
the next inequality is hold.:

q(x) =y() ISC)Il M max {§, T, 5T} *
w{e“(x)5 -1- a(x)S}eﬁ“’ <{<1,

where { — const.

4 Conclusion

In this article, we developed the functional
parametrization method to solve the non-local
problem for the system of partial differential
equations of hyperbolic type in the special domain.
We established sufficient conditions for a unique
solvability to nonlocal problem (1)-(3). These results
can be extend to various non-local problems for
partial differential equations of hyperbolic type in the
specific domain.

Then the non-local problem for partial

differential equations of hyperbolic type (1)-(3) has a 5 Acknowledgement
unique solution u*(t, x)
determined by the equality This research is funded by the Science

u*(t,x)=z"(t,x) + 1 (x), (t,x) € Qq, Committee of the Ministry of Education and Science

where the pair {z"(t, x), I (x)} is the solution to . of the Republic of Kazakhstan (Grant No.
problem (4)-(7). AP19675358).
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