
  International Journal of mathematics and physics 3, �2, "� (2012)    

 
© 2012 al-Farabi Kazakh National University Printed in Kazakhstan 

 
 
 
 
 
UDC 537.86/.87:530.182 

 

A.A. Temirbayev1, Y.D. Nalibayev1, Z.Zh. Zhanabaev1, V.I. Ponomarenko2, M. Rosenblum3  
1Physical-Technical Department, Al-Farabi Kazakh National University, al-Farabi avenue 71,  

050040 Almaty, Kazakhstan 
2Institute of Radio-Engineering and Electronics, Saratov Branch, Russian Academy of Sciences,  

38 Zelyonaya str., Saratov, 410019, Russia 
3Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 

D-14476 Potsdam-Golm, Germany 
 

Forced dynamics of oscillator ensembles with global nonlinear coupling 
 
 

Abstract. We perform experiments with 72 electronic limit-cycle oscillators, globally coupled via a linear 
or nonlinear feedback loop. While in the linear case we observe standard Kuramoto-like synchronization 
transition, in the nonlinear case, with increase of the coupling strength, we first observe a transition to full 
synchrony and then a desynchronization transition to quasiperiodic state. In this state the ensemble 
remains, however, coherent so that the mean field is non-zero, but mean field frequency is large than 
frequencies of all oscillators. Next, we analyze common periodic forcing of the linearly or nonlinearly 
coupled ensemble and demonstrate regimes when the mean field is entrained by the force whereas the 
oscillators are not. 
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Introduction 

Ensemble of many interacting oscillatory units is 
a popular model, widely used for description of 
collective dynamics of such various objects as lasers 
and Josephson junctions, spontaneously beating atrial 
cells and firing and/or busting neurons, pedestrians 
on the footbridges and handclapping individuals in a 
large audience, electrochemical oscillators, 
metronomes, and many others. Quite often the 
networks of such elements can be approximately 
considered as fully connected, with the same strength 
of interaction within each pair of elements. In this 
case one speaks of the global or mean field coupling. 
Analysis of collective behavior of globally coupled 
systems is not only important for applications, but 
also poses a number of problems which are highly 
nontrivial from the standpoint of nonlinear dynamics. 
Due to these reasons, this topic remains in the focus 
of interest within the last three decades. Basic theory 
and further references can be found in the following 
books, book chapters, and review articles [1–3]. 

The main effect of global coupling is emergence 
of a collective mode, or mean field, due to 
synchronization of some or all elements of the 
population. The degree of the collective synchrony is 
reflected in the amplitude of the collective mode; this 

amplitude is often called order parameter. Typically, 
the order parameter increases with the interaction 
strength, if the latter is larger than a certain threshold 
value. This effect is well-understood within the 
framework of the analytically solvable model of 
infinitely many sine-coupled phase oscillators [4]. 
The character of the Kuramoto transition from the 
incoherent state, where the order parameter is zero, to 
the partially or fully synchronous state with non-zero 
mean field depends on the distribution of the natural 
frequencies within the population; this transition can 
be either smooth [4, 5] or abrupt [6]. The described 
scenario is, however, not universal: consideration of 
more complicated oscillators and/or general coupling 
results in such effects as clustering [7] chaotization of 
the mean field [8, 9], and appearance of robust 
heteroclinic network attractors [7, 10]. Another 
subject of recent interest is partial synchrony in 
networks of pulse coupled identical integrate-and-fire 
units, globally coupled via an additional equation for 
the mean field [9, 11]. This model exhibits a 
collective mode that is not synchronized with 
individual units, while synchronous state is not 
stable. Similar regime was numerically observed for 
a model of active mechanical oscillators, coupled via 
an inertial load [12]. Coherent but not synchronous 
dynamics in ensembles of nonlinearly coupled Stuart-
Landau oscillators was demonstrated numerically and 
analyzed theoretically in the framework of phase 
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approximation in. The latter system demonstrates 
self-organized quasiperiodic dynamics (SOQ), when 
the frequency of the mean field differs from the 
frequency of oscillators, and non-monotonic 
dependence of the order parameter on the coupling 
strength. Experimental investigation of such regimes 
is a the primary goal of this paper. 

In this paper we extend our experimental 
analysis of electronic oscillators, coupled via the 
common load, communicated in [13]. Using the 
new experimental setup with 72 units instead of 
20, we systematically analyze the ensemble 
dynamics for the cases of linear and nonlinear 
coupling. The latter is organized as follows: the 
phase shift in the feedback loop depends on the 
voltage across the common load (mean field 
amplitude). We demonstrate that increase of the 
global coupling first results in the full synchrony 
and then in its destruction. After synchrony 
breaking, the system exhibits quasiperiodic state: 
frequency of the mean field is larger than 
frequencies of all individual oscillators. Next, we 
investigate the effect of the external forcing of the 
globally coupled system. Here the main result is a 

demonstration of the theoretical prediction, made 
in [14]. Namely, we show, that in case of nonlinear 
coupling, the weak external driving entrains only 
the mean field, but not individual oscillators. Thus, 
the forced global dynamics remains quasiperiodic.  
Ensemble of electronic oscillators 

In this Section we describe our setup with 72 
globally coupled electronic generators. First present 
implementation of an individual unit. Next, we 
discuss organization of linear and nonlinear global 
coupling and of the common external forcing.  

Scheme of an individual generator is given in 
Fig. 1; it represents a nonlinear amplifier with a 
positive frequency-dependent feedback via the Wien-
bridge. The amplifier is implemented by the 
operational amplifier U1, resistors R4, R5, R6, R7 and 
diodes D1, D2. The Wien-bridge consists of resistors 
R1, R2, R3 and capacitors C1, C2. These elements 
determine the frequency of the oscillation. Fine 
frequency tuning is performed by the trimmer resistor 
R3, so that all oscillators in the ensemble have close 
frequencies Ã 1.1 kHz. With the help of the trimmer 
resistor R5 the amplitudes of all uncoupled oscillators 
were tuned to approximately same value V Ã 1.5 V.  

 

 
Figure 1�� Wien-bridge oscillator. Here iV  is the output voltage of the i-th oscillator and fV  is the 

output voltage of the global feedback loop (cf. Fig. 3).
 
 Global coupling is organized via the common 

resistive load cR , see Fig. 2. A fraction of the 
voltage 1V  across this potentiometer is fed back to 
the individual oscillators via the linear and nonlinear 
phase-shifting units and resistors 1R . The input to the 
feedback loop can be written as c LV V�� , where 
parameter � , 0 1�� � , quantifies the strength of 
the global coupling. It is easy to show that  

 

1

2 /

N
ii

c
c

V
V

N R R
� ��

�
�

 (1) 

where iV  is the output voltage of the i-th oscillator. 
Since 2 cR NR	 , we have c iV V�
 , i.e. the 
coupling is of the mean field type  
The voltage cV  from the common load is fed back 

to all oscillators via the feedback loop which 
includes either linear or both linear and nonlinear 
phase-shifting units; their schemes are depicted in 
Fig. 3. The linear subunit is an active all-pass filter 
which shifts the phase of the signal but keeps its 
amplitude, see Fig. 4a,b. The phase shift can be 
adjusted by the resistor 10R , as shown in Fig. 4c. 
The nonlinear subunit is implemented by a high-
pass first order filter, where nonlinear properties of 
diodes provide a dependence of the phase shift 
between input and output on the amplitude of the 
input (Fig. 4a,b). In experiments with external 
forcing of the globally coupled ensemble, the sine-
wave generated by NI ELVIS II Instrumentation, 
Design, and Prototyping Platform was supplied to 
the feedback loop via a summator.
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Figure 2�� Scheme of the globally coupled system. Individual generators are shown here by one symbol, there detailed 

scheme is given in Fig. 1, whereas the schemes of the linear and nonlinear phase-shifting filters are given in Fig. 3. 
With the help of the switch, the nonlinear unit can be excluded from the feedback loop. The strength of the feedback is 

governed by the potentiometer cR . Common forcing by the external voltage extV  is organized via the summator U. 
 
 Experimental results 

First we perform the experiments with the linear 
phase-shifting filter only. Synchronization transition 
for the fixed phase shift, �ÁÃ0.65Ç is illustrated in 
Fig. 5. As expected, we observe a monotonic 
growth of the order parameter R with the coupling 
strength �. Due to the finite size of the ensemble, R 
is not small in the asynchronous state; the transition 
to synchrony is much better characterized by the 
minimal mean field amplitude Amin [13]. One can 
see that Amin is practically zero when frequencies of 

oscillators differ and starts to grow when some 
oscillators synchronize. Generally, we can 
understand Amin as a measure of coherence of the 
ensemble. Indeed, if the finite-size ensemble is in a 
coherent state (synchronous or partially 
synchronous), the mean field looks like a periodic 
process, corrupted by some noise, and its minimal 
amplitude essentially deviates from zero. Otherwise, 
if the ensemble is in an asynchronous state, the 
mean field fluctuates and looks like filtered noise; 
the amplitude then can be very small. 

 

 
Figure 3�� Linear (a) and nonlinear  

(b) phase-shifting units. 
Figure 4�� (Color online) Characteristics of the linear (black circles) 

and nonlinear (red squares) phase-shifting units: (a) Output voltage 
and (b) phase shift � � /out in" / /  � � � vs. the input voltage.  

(c) Phase shift of the linear unit vs. 10R . 



 ����Forced dynamics of oscillator ensembles with global nonlinear coupling ���������������������������������""

 
International Journal of mathematics and physics 3, �2, "� (2012) 

 

Figure 5�� (Color online) Transition to synchrony in ensemble of 72 oscillators with the linear phase-shifting unit in the 
global feedback loop. (a) Order parameter monotonically growth with �. (b) Minimal  amplitude of the mean field is a 
measure of the coherence of the ensemble; its deviation from zero reveals the  transition to synchrony. (c) Frequencies 

of individual oscillators (red circles) and of the mean field (solid blue line). 
 
 
Now we switch on the nonlinear phase-

shifting filter in the global feedback loop and 
analyze the collective dynamics by increasing 
coupling strength �. The transition for 0.65"� �  
is shown in Fig. 6. We see that the oscillators 
synchronize for the coupling 0.5� V  and then 
synchrony becomes unstable. The slow oscillator 
leaves the synchronous group and the order 
parameter decreases. For sufficiently large 
coupling all oscillators are not entrained by the 
mean field. However, the mean field has a non-
zero amplitude and the SOQ state takes place. 
The picture quantitatively coincides with the 
theoretical and numerical result for phase 
oscillators in [15].  

Now we present the results of experiments 
where nonlinearly coupled ensemble was forces 
by common periodic signal. The case of the 
nonlinearly coupled ensemble in the SOQ state 
was treated in [14]. Investigation of the common 
forcing of large ensembles is relevant, e.g. for 
neuroscience, where this model can be used for 
description of rhythms of a large neuronal 
population, influenced by rhythms from other 
brain regions. In the first approximation the 

ensemble exhibiting a collective mode can be 
considered as a macroscopic oscillator, and 
therefore can be entrained by an external forcing. 
However, if we go beyond this simplistic 
description and consider the dynamics of the level 
of individual units, we can expect different 
effects. So, in the case of the harmonically forced 
Kuramoto model one observes formation of 
synchronous subpopulations of oscillators with 
different frequencies. In the case of the 
nonlinearly coupled ensemble in the SOQ state 
the theory for identical oscillators [14] predicts 
that external force can lock the mean field 
without entraining individual oscillators. Here we 
verify this prediction.  Results on forcing the 
nonlinearly coupled ensemble are presented in 
Fig.7.  First, we see that the mean Èeld is 
entrained by the external force, if the amplitude of 
the forcing exceeds a critical value. Such 
behavior is typical for noisy and chaotic 
oscillators. Since the mean Èeld of a Ènite size 
ensemble is not exactly periodic, but Éuctuates, it 
is natural that the response of the ensemble to an 
external forcing is similar to response of as 
macroscopic noisy oscillator. 
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Figure 6�� (Color online) Nonlinearly coupled ensemble: Transitions from asynchronous to fully 
synchronous and from fully synchronous to SOQ state. (Notation are the same as in Fig. 5). 

 
 

Figure 7 ��(Color online) Results of harmonic forcing of the nonlinearly coupled ensemble, for two di=erent amplitudes 
of the force: 0.08 (a,b) and 0.15 (c,d). Here exf  is the frequency of the common external forcing. mff  Æ exf  is shown 

with red dots, if  Æ exf  is shown by blue lines. 
 



�� Forced dynamics of oscillator ensembles with global nonlinear coupling ���������������������������������!�

 
International Journal of mathematics and physics 3, �2, "� (2012) 

In the case of the ensemble in the SOQ state, we 
observe regimes where the mean Èeld is locked to 
the external force but the oscillators are not. Thus 
the system remains in the SOQ state. For stronger 
coupling we have both SOQ and fully synchronous 
states. It means that for some (relatively narrow) 
range of external frequencies, the force destroys the 
quasiperiodic dynamics and imposes full synchrony; 
this is accompanied by an essential (up to 2 times) 
increase of the order parameter. 

Conclusion 

Thus, we have experimentally demonstrated a 
state where oscillators are synchronized neither with 
each other nor with the mean Èeld, but the amplitude 
of the latter is, nevertheless, nonzero. This peculiar 
coherent state is possible because phases of 
oscillators, though not locked, are coordinated in a 
way that their distribution is nonuniform. Our results 
correspond well to analytical results for phase 
oscillators [14, 15]. The SOQ regime we observe 
emerges when the system is brought, due to the 
phase shift, close to the point where attractive 
interaction becomes repulsive. Thus, we expect 
SOQ to be observed in other physical systems where 
the global coupling is characterized by an amplitude-
dependent phase shift or time delay.  
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