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The Numerical Study Distribution of the Temperature Field
in a Constructing Element of a Complex Form

Abstract. Many parts of internal combustion engines, gas turbine power plants, steam generators of nuclear power
plants and manufacturing industries experience thermal effects of various forms. At the same time, a process of thermal
expansion occurs on these parts and, as a result, a thermal stress-strain state arises on them with a value that in some
cases can exceed the limit value. Therefore, knowledge of the stationary field of temperature distribution in the volume
of partially thermally insulated parts of a complex configuration in the presence of a heat flux and heat exchange in
parts of its surface is an urgent task. At the same time, it is very difficult to take into account all inhomogeneous
boundary conditions when solving the problem of stationary heat conduction. Therefore, a new numerical method is
proposed, based on the law of conservation of total thermal energy in combination with the finite element method. In
this case, the procedure for minimizing the total thermal energy is used using quadrilateral bilinear finite elements.
Partial thermal insulation, heat flux supplied to the local surface, and the process of heat exchange through the local
surface area and ambient temperature are taken into account. Nodal temperature values are determined [1; 2].

Keywords: mathematical model, heat flow, functionality, heat exchange, thermal insulation.

Introduction

In the thermomechanical process, the main
characteristic that has a significant impact on the
strength of the load-bearing structural elements is an
intensive temperature increase. Temperature is one of
the most important characteristics of the growth
process and affects the morphology and crystal
structure of heat-resistant alloys. Depending on the
parameters of the structure body, the distribution of
the temperature field in its different parts is uneven.
It should be noted that the simultaneous influence on
the distribution of temperature over the volume of the
body and such external factors as various forms of
local thermal insulation, the property of heat transfer,
and the temperature of the heat source. Consequently,
during the thermomechanical process, in some parts
of the structural elements, the temperature will be
acceptable, and in some — critical, which leads to
rapid wear of structural elements and to the loss of
their physical qualities. In this regard, the exact
calculation of the distribution of the temperature field
at each nodal point of multidimensional bodies of
complex shape is relevant [2; 3; 4].
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Experimental: This article discusses a technique
for constructing a mathematical model and the
corresponding computational algorithm that allow
solving problems of studying the patterns of the
temperature distribution field in a structural element
of a complex shape with the simultaneous presence
of heat flow, heat transfer and partial thermal
insulation on their local surfaces.

Literature review and problem statement

At present, in our country and abroad, there are
many works devoted to the problem of the influence
of a thermomechanical process on a change in the
structure and composition of the material of any
technical installation or design. This article takes into
account the simultaneous influence of the heat flow
on the body, partial thermal insulation and local heat
transfer. A computational algorithm is presented for
solving a problem obtained by discretizing bodies of
complex shape made of heat-resistant alloys using
quadratic finite elements [2; 7].

The aim and objectives of the study: The purpose
of this article is to show the regularity of the
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distribution of the temperature field using a
numerical study of heat transfer in the presence of
heat flow, thermal insulation and heat transfer. The
objectives of the study are to determine the
temperature value at each nodal point of a
multidimensional body to develop a computational
algorithm based on minimizing the total thermal
energy functional.

To illustrate the proposed numerical method and
the corresponding computational algorithm, consider
the following problem. Given a "channel-like" body
of unlimited length —oco < z < oo (Fig. 1). The outer
side and inner surface of which are thermally
insulated along the entire length. Through the areas
of the upper surfacey = h,0 < x < (r + 21),—o0 <
z < oo heat exchange with its environment takes

hoc T()L’

place. In this case, the heat transfer coefficient is h,.,
and the ambient temperature is T,.. On the surface
y=0,[(0<x<Dand (r+1) <x < (r+20)]
—oo < z < ooa heat flux of q - constant intensity is
supplied. It is necessary to determine the steady
temperature distribution field in the volume of the
structural element under consideration. To do this,
first, the initial cross section, which is shown in Fig.
1 is discretized by quadrangular finite elements.
Within each finite element, we represent the
temperature distribution field as [1; 2; 8]

T(x,y) =a; +ax + azy + a,y =
=@1(x,y) Ty + @a(x,y) " T, +
+03(0,y) Tz + @a(x,y) " Ty )
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Figure 1 —The design scheme of the problem under consideration
in the cross section of a structural element.

where @;(x, y) are the shape function for a quadrangular finite element with four nodes [1]:

_ (b—x)(a-y)
01 (xy) ==
_ (b+x)(aty) .
(P3(X' Y) - 4ab ]

_ (b+x)(a+y),
Q2(x,y) = — " ——
_ (b=x)(a+y)
Pa(xy) = T 2D @)

where the size of the finite element along the direction of the coordinate axes x and y is [2b;2a] (Fig. 2)
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Figure 2 — Discretization of the computational domain in the context of a structural element.
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Where V is the volume of the timber in question;
S(x=0) - the surface area of the beam (x=0), where the
heat flow ¢ ; S(x=A) - the surface area (x=A) of the

beam through which heat is exchanged with the

environment h; Kyy; Ky, (%) - the coefficient of
thermal conductivity of the timber under
consideration, respectively, in the directions of the
coordinate axes ox and o0y.

The cross-sectional area of the timber in question
(which has the shape of a rectangular quadrangle) is
discretized using coordinate lines into quadrangular
finite elements. The number of discrete finite
elements will be m X n (respectively, on the axes ox
and oy). For each element, we construct a local
coordinate system oxy, so that the origin coincides
with the geometric center of the element, as shown in
Figure 2. The numbering of the element nodes is
shown in this figure. The coordinates of the element

DIn the first node,i.e.whenx = —a;y = —b
¢p1(—a;—=b) = 1; p,(—a;—b) = @3(—a;—b) = ¢,(—a;—b) = 0.
2)In the second node i.e.whenx =a;y = —b

¢1(a; —=b) = 0; @,(a; —b) = 1; @3(a; —b) = ¢4(a; —b) = 0.
3)In the third node,i.e.whenx = a;y = b
p1(a;b) = 0; pz(a;b) = 0; @3(a;b) = 1; p4(a;b) = 0.
4)In the fourth node,i.e.whenx = —a;y = b
p1(=a;b) = @a(—a;b) = @3(—a;b) = 0; @4(—a;b) = 1.
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nodes in the local coordinate system will be as
follows 1(—a; —b); 2(a; —b); 3(a; b); 4(—a; b):
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Figure 3 — Scheme of building a local coordinate system

The properties of these form functions will be as
follows:

“4)
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5)Zi=19i =1, (5)
6) i, 2 =0, (©)

at any point in a discrete finite element.

In addition, from (1), (2) the values of
temperature gradients at any point of a discrete
element are easily determined:

T _ a4 9¢in,
ax ~ “i=1 gy Tl
ar 4 09
—_—= ¥ —T;
dy =1 dy [ (7)

The expression is also defined:

4
<6T)2_ a<piT_ _ b—yT_I_b—y +b+y b+y 17
ax)  \. , ax V] Tl 4ab ' 4ab * 4ab * 4ab |
i=
it A SR TP k) B SV A et N S it S
16a2bh? ! 16a2h? 12 16a2p2 13 16a2h2 14
b2_2b + 2 b2_ 2 b2_ 2
prTaey Ty 22 2. Y T,Ts — 2 y “T,T, +
16a2b? 16a2b? 16a2b?
b2+2by+y? 2 b2+2by+y b%+2by+y 2
Y ear 13T T2 g Bhht I mm T
2 4 2
(E)T) 3 Zaq)iT‘ _[ a—x a+x a+x a-x_1°
ay)  \« 4 0y )7l 4ab ' 4ab *  4ab * 4ab | T
i=
_a2—2ax+x2 T2 a® — x? T 2 a® — x? — a® —2ax + x? _—
~ 16a?b? ! 16a2h2 12 16a2h2 173 16a2h? 1ha
a® + 2ax + x? . a® + 2ax + x? B a® — x? —_—
16a2b? 2 16a2b? 273 16a2p2 2%
a?+2ax+x* . 2 _a?-x? a?-2ax+x? 2
16a2b? " +2 16a2h2 T3Ty + 16a2b2 4

For clarity of the proposed computational
algorithm, we consider the cross section of the timber
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under consideration as one discrete quadrangular
element, as shown in Figure 4.
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Figure 4 — The calculation scheme of the problem

Now for one discrete element, we calculate the

integral over the volume. Here we use the followin 1 T\ 2
forn%ula: ¢ Ju=J 2 [Kxx (E) ] av (11)
b
[feyav =1 f° [° fGy)dxdy. (10) v
\Y%

In calculating this integral, we use the expression

Using (10) we calculate the integral: (8). As a result, we have:

2
Do [P PR 2y gy = 290 1P ()2 ghy 4 y2)dy =

16a2b? 16a2b?

R az>

2) [ 10 (—2 2N 1 Ty dxdy = T3 - 2a 1, (b - 2by + y?)dy =
= 0l [op3 + 22| = 21y, (13)
30 S (-2 P2 T T dxdy = T 2a[2b® — 2] = - L1y (14)
4 [0 [0 (2 B2 T dxdy = =Ty Ty; (15)
51, fiﬂ% Thdxdy = S 26 4 2] = (16)
6) 1% (2 220 T Ty)dxdy = 2% - 2a 2 = L1,T; (17)
NS (2 B T dxdy = - LT,y (18)
) % I, T P dady = o 200 = T3 (19
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a b b2+2by+y? 2b
0 J2 Sy (=2 =TTy dxdy = — - TsTy;

10) [, [, T, 2 dxdy = -T2

16a2b?

Substituting (12) - (21) into (11), we find the integrated form /.

B 11( aTde_LKxx a b aTde B
1_f2 xx(ax) 2 f_af_b(ax) Xy =

LKy (@ (7 b? —2by + y? b? — 2by + y* b? —y? b? —y?
=—"xf f s AR Y e A | W S S | Y Sl
2 at-b 16a“b 16a“b 16a“b 16a4b
b2—2by+y2 5 b2_y2 b2_y2
16a2p? 2 Y 27gazpz T3 T 2qgazpr Tt
b%* +2by +y* , _b%*+2by+y? b? + 2by + y?
— T T2 T, 4+————"T,*|dxd
16a2b2  ° Toazpz 1314t qggapz 14 ldxdy
= % [T)% = 2Ty Ty — TyTs+TyTy + To? + TyTy — Ty Ty + T5® — 2T5T, + T,7%];
Examining the last expression, we find that the Joa=f 2 [ (6T) ] dv
sum of the coefficients in front of the nodal = 9y
temperature values will be zero. Indeed, from (22) we \%
find that (1-2-1+1+1+1-1+1-2+1)=0.
Next, similarly, we find the integrated form Using (9) we find that
expression

a?-2ax+x? ., 2 Ty 8a> a . 2.
D f— b 1eazpz N1 dxdy = 16(112b2 2b =505
a b a?—x? 2Ty T. 4a>  a
2) f—a J_—b 2 16a2b? I Tydxdy = 161b22 +2b 3T ETsz;

a b a?-x2 2a
3) f_a f_b(_z -W-T1T3)dxdy = _5T1T3 = _5T1T32

a b 2_2ax+x? 2
4) [ o2 - T T dxdy = — T Ty;

5) 10 R 2 ddy = 21,7

16a2b?

a?+2ax+x

a b 2 2

6) Jo, 2y (~2 =T Ts)dxdy = — T, Ts;
a b a?—x? a

7) f—a f_b(_z ) 16a2b2 T2T4)dxdy = _5T2T4;

b a“+2ax+x*” 2+2ax+x? a

(20)

21

* T1T4_ +

(22)

(23)

24)

(25)

(26)

27

(28)

(29)

(30)

€2))
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9 [* f_ — sz L Tydxdy = T3T4; (32)
b 2ax+
10) [° 2, S22 20ndy = 21,2 (33)

Substituting (24) - (33) into (23) we define the integrated form J,,.

_flK (aT)Z dV—LKWIafb(andd _
27 ) 2] \ox 2 ) ) oy Xy =
aLKyy

= oa [Tl + T1T2 - T1T3 - 2T1T4, + TZ - 2T2T3 - T2T4_ + T3 + T3T4_ + T4 ] (34)

In this expression, the sum of the coefficients in front of the nodal temperature values will be equal to
zero [2; 9; 14].

Now we find the expression for J;:

bLKxx 2 2 2 2
]1 =]11 +]22 = 6 - 2T1T2 - T1T3 + T1T4_ + Tz + T2T3 - T2T4 + T3 - 2T3T4 + T4 ] +

aLKyy

+— [T1 +T4yT, — T T3 — 2Ty T, + T2 —2T,T; — T, T, + T3 + T53T, + T4 1; (35)

Now from (3) we find:
b
= aras=1a [ [T+ 0T, + @30T + 940 Tylema dy =
S(x=-a) -b

b
21 =Ty + (b + Y Tyldy =Z2[2b2Ty + 2b2T,] = LablT; + T,; (36)

From (3) we calculate:

2 hL b 4 2
I3 = f _(T Toc)“ds = _f [Z (Pi(er)Ti — Toclx=ady =
S(x= a)2 2 -b =1

hL
=2 [Q”l(x Ty + @206 0T, + +03(,Y) Tz + @ (6, )Ty — Toel? lx=ady =
hL b b%2-2by+ (b ) b%+2by+y? (b+y)
R o Aoy N R A 1Y (R s 2 L A R e 2l X S IV EY)

Now in (37) we calculate each integral separately:
22by+y? ., 2 1 2b3 2.
DL [ty = b + T T
2) [, 25211 dy = 0b® - 22 1T
-b 4b2 243 y 2b2 3 243>
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3) [0, [252 Ty Toc | dy = 3(2b2 = 0) Ty T,

4) 7, [P g2 gy = 212

b2 (2b3

4b?
b b+

5) [0, [222 Ty | dy = 2D 5T,

6)[”, Toc2dy = 2bT,c%; (38)

Substituting (38) into (37) we find the integrated form J5:

/ f h(T I Y hL[ 1 <2b3 2b3
= _ —_ S = —
7 L=y 2 o¢ 4b? 3

3

1 . 2b ,
T2 + W Zb T2T3 - _(Zb - O)TZTOC +

1 3 2b3 7.2 2 hL [2b 2 2b 2b 2
+m Zb + T 3 - 2bT3TOC + ZbTOC ] - 7 ?Tz + ?T2T3 - ZbTZTOC + ?T3 - 2bT3TOC] -
_ Lhp 2 27.
[T2 + TyTs — 3Ty Tye + T3 — 3T5Toe + 3T, (39)

It should also be noted here that in the expression
in the bracket the sum of the coefficients will be equal
to zero.

Given the expressions J;;/, and J; from (3) we
find the final integrated form of the functional J, that

bLKxx

J=h+tL+]z=

characterizes the total thermal energy of the timber in
question, taking into account the simultaneous
presence of heat flux, thermal insulation and heat
transfer:

[T\2 — 2Ty Ty — TyTs + TyTy + T + ToTs — TyTy + T3 — 2T5T, + T,°] +

aLlKyy ., 2 2 2
+T[T1 + TyTy — TyTs — 2T4Ty + Ty® — 2T, Ty — ToTy + Ts” + TsTy + T,%| +

bLh

+bLQ[Ty + Ty + S5 [T, + T, Ts —

Further, minimizing the functional J with respect
to the nodal values of the temperature Ty, T,, T; and

9] _ . _ bLKxy o
1)6T1 =0;= . (2T1 2T, — T3 + T4) +
aJ bLK ey
2)£ =0;= 7(—2T1 + ZTZ + T3 — T4) +
+ 22T, + Ty -
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3T, Tpe 4 T32 — 3T5T, + 3T,.2]; (40)

T, we find the resolving system of linear algebraic
equations

S (2T, + T, — Ty — 2T,) + bLg = 0;

aLKyy

(Tl + 2T2 - 2T3 - T4_) +

3T,c) = 0;
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2)2L = 0,2 25 (_Ty 4 T, + 2Ty — 2T,) + =22 (=Ty — 2T, +2T5 +Ty) +
aT; 6a 6b

+ 2L (T + 2T = 3Ty) = 0

4);% = 0;= 2 (1) — T, — 2Ty + 2T,) + 222 (=21, — T, + Ty + 2T,) +bLg = 0. (41)

For convenience, we discretize with 6 elements.
The global numbering of elements and nodes is
shown in (Fig. 2). Now, for all finite elements, we
write the expression for the functional J, which

J= ("ﬂ‘f—b"")IE (T2 = 2TyT, — Ty Ts + Ty Ts + T2 + T, Tg — T, Ts + T2 — 2T, Ts + T2) +

characterizes its total thermal energy, taking into
account the existing boundary conditions [2; 7-19].

The integrated form of this functional for all
discrete elements is as follows:

+ (blgayy> (T2 + Ty T, — TyTg — 2Ty Ts + TZ — 2T, T — ToTs + T2 + TeTs + T2) + (alq)g(Ty + Ty) +
IE
+ (aI;;‘X)HE (T2 = 2T3Ty — T3Tg + T3Tg + TZ + Ty Ty — Ty Tg + TE — 2T Tg + TZ) +
+ (bl;yy> (T? 4+ TyTy — Ty Tg — 2T3Tg + TZ — 2T, To — T, Tg 4+ T2 + ToTg + TZ) +
11E
+ (@(T; + T,) +
(al;(lfx)”m (T& — 2TsTe — TsTyy + TsTyg + TE + TeTyq — TeTyo + Tfy — 2Ty Tyo + Ty ) +

= ) (TZ 4+ TsTe — TsTyy — 2Ts Ty + TE — 2TgTyy — TeTyo + TA+T11 oo + T) +
IT11E

blh , , i
+ (?) (Tll + T11T10 - 3T11Te + TlO — 3T10Te + 3Te) +
IIIE

alK, 5 , , ,
* ( 6b )IVE (T¢ = 2TeTy — TeTip+TeTyy + T + TyTip — Ty Ty + T — 2TypTyg + TH) +

bIKyy\ 2 2 2
+ 6a (T6 + T6T7_T6T12 - 2T6T11 + T7 - 2T7T12 - T7T11 + T12 + T12T11 + Tll) +

IVE
blh 5 , ,
+ (?)IVE (T12 + T12T11 - 3T12Te + T11 —_ 3T11Te + 3Te) +

alKyy 5 , , i

+( 6b )VE (T7 = 2T;Tg = T;Taz + T;Typ + Tg + TgTiz — TgTip + Tiz — 2TasTip + Tio) +
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6a

blKYY 2 2 2 2
+{—=| (T7 +T;Tg —T;Ty3 — 2T, Ty, + Tg — 2TgTy3 — TgTyp + Ti3 + Ti3Tiz + Tf) +
VE

3
+

(alKXX
6b

+

bley
6a

3

Further, minimizing the last functional over nodal
values, we obtain the following system of linear
algebraic equations with respect to T;:

9] C_ 4
a—Ti—O,(l—l g 14-)

(42)
Solving the last system by the Gaussian method,
we determine the nodal values of temperatures, and
according to them, according to (1), the temperature
value at any point of each finite element. In
particular, with the following initial [1; 2]:

W];

Kex = Kyy =72 [Cm-°C

a=b=1cm; q=—100[mL2];

6 [l
cm? -°CJ’

r=2cM,

h, =

T, = 40°C; [ =1cm
we find that
T, =T, =52,895°C; T, =Ts = 53,017°C;
Ts = Ty = 50,482°C; T, = Tg = 49,874°C;
T, = 48,658°C; T;o = T14 = 48,573°C;

Ty, = Ty3 = 48,304°C; T, = 48,152°C.

Int. j. math. phys. (Online)

blh ) ) )
+ (—) (T{5 + Ty3Typ — 3Ty3Te + T, — 3Ty, Te + 3TE) +
VE

) (T§ — 2TgTy — TgTug + TgTuz + TS + ToTyy — ToTyz + TEy, — 2Ty, Tyz + Tis) +

VIE

> (Tg + TgTo — TgTyy — 2TgTyz + T6 — 2ToTyy — ToTyz + TEy + TyyTis + Tis) +
VIE

alh ) ) )
+ (_)VIE (T14 + T14_T13 - 3T14Te + T13 - 3T13Te + 3Te)

It can be seen from the obtained results that due
to the symmetrical formulation of the problem under
consideration, the process of the steady distribution
of the temperature field in the section of the beam
will also be symmetrical.

Results and Discussion

The proposed mathematical model, based on the
law of conservation and change of thermal energy,
allows us to solve a class of multidimensional
problems of steady thermal conductivity for
structural elements of any configuration, in the
presence of partial thermal insulation, heat transfer,
heat flow and temperature.

In this paper, because of the symmetry of the
nodal points of the problem under consideration, the
results of the numerical solution are symmetrical, i.e.,
the same temperature values.

Conclusion

The exact calculation of the distribution of the
temperature field at each nodal point is determined
by formula (1). In this paper, based on the energy
principle combined with the finite element method,
the steady-state temperature distribution field in the
volume of a partially thermally insulated beam in the
presence of heat flow and heat exchange is
investigated numerically. A numerical solution is
given for specific initial data. A numerical study of
the convergence and accuracy of the obtained
numerical solutions is carried out.
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