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Effect of nitrogen concentration on titanium nitride thin film formation

Abstract. This paper presents the study of the influence of argon/nitrogen gas concentration ratio in the of 
reactive magnetron sputtering process on the formation of titanium nitride (TiN) thin films. The addition 
of 5% nitrogen to the gas mixture is sufficient for the formation of titanium nitride films. It was found that 
changing the concentration of nitrogen in the reactive gas mixture affects the morphology of the surface, 
in particular, increasing the concentration of nitrogen leads to an increase in surface roughness of the 
resulting TiN films. According to the results of Raman spectroscopy, there is a dependence of the ratio of 
peak areas (TO + LO)/(TA + LA) observed in the regions of 603, 175 and 315 cm-1, respectively, on the 
N2 concentration. The X-ray Photoelectron Spectroscopy (XPS) analysis results show that increasing the 
nitrogen content in the reactive gas leads to a decrease in the oxygen concentration in the thin films. The 
results deepen the understanding of the synthesis of TiN thin films and their potential for the development 
and improvement of materials for various applications including microelectronics, optics, and coatings.
Key words: titanium nitride, gas concentration, reactive magnetron sputtering, Raman spectroscopy, XPS 
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Introduction

Titanium nitride (TiN) is one of the most important 
materials in the field of materials science due to 
its largely unique properties and is used in a wide 
range of practical applications, from optoelectronics 
to the development of radiation resistant devices 
[1-3]. For instance, recently, Solovan M.M. et al. 
have developed a new type of photodiode made of 
a combination of titanium nitride and cadmium zinc 
telluride, which is characterized by high detectivity, 
fast response and radiation resistance, making it ideal 
for use in space or in radioactively contaminated 
environments [3]. TiN also has high mechanical 
hardness, chemical stability and biocompatibility, 
which greatly expands its range of applications as a 
coating for implants, in fuel cells, photocatalysis and 
as an abrasion-resistant coatings for highly loaded 
parts [4-7]. The appeal of TiN lies in its ability to 
provide high adhesion and abrasion resistance, 
structural integrity and durability, which is the reason 
for its use in various industries [8].

There are several methods for the fabrication of 
titanium nitride coatings, including chemical vapor 
deposition [9-11], plasma-enhanced chemical vapor 
deposition [12-14], e-beam evaporation [15-17], 
direct nitriding of metallic titanium [18], magnetron 
sputtering [19-23], cathodic cage plasma deposition 
[24,25], and various other approaches. However, the 
production of high-quality TiN thin films remains a 
major challenge [12]. One of the methods for controlled 
growth of thin films is magnetron sputtering, which 
is a physical vapor deposition process where the 
target material is bombarded with high-energy ions 
to release particles that subsequently deposit onto a 
substrate, forming a thin film. The advantage of this 
technique lies in its ability to provide uniform and 
dense coverage, precise control of film thickness, and 
the capability to deposit films onto various substrates 
[26]. However, controlled growth of TiN films with 
specified structural and chemical characteristics is 
still a difficult task. One of the methods of controlling 
the resulting films is to change the ratio of argon and 
nitrogen (Ar/N2) concentrations [27-28].
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This study investigates the effect of gas 
concentration on the properties of TiN thin films. 
This study contributes to a better understanding 
of the formation of TiN thin films. Through a 
comprehensive approach and by using modern 
methods for characterization of physical, optical 
and structural properties, the influence of the Ar/N2 
reactive gas ratio in the reactive magnetron sputtering 
process on the formation of TiN films was revealed.

Materials and Methods 

2.1. Materials
TiN thin film was deposited on a p-type silicon 

(100), aluminum foil (99.9%) and quartz glass 
substrates by reactive DC magnetron sputtering in Ar 
+ N2 atmosphere. The reactive sputtering gas was a 
mixture of argon (99.999 %) and nitrogen (99.9 %) 
supplied by Ihsan Technogas LLP, with the different 
Ar/N2 volume ratio. The 2-inch diameter sputtering 
target was cut from a flat 5 mm thick VT1-00 grade 
titanium wafer (99.9%). 

2.2 TiN thin film deposition 
The experimental setup was a HEX modular thin 

film deposition system from Korvus Technology 
Ltd. Using a turbomolecular pump, the pressure in 
the chamber was reduced to 4 × 10-4 Pa. The chamber 
was then vented with a mixture of Ar/N2 gases, each 
at a flow rate of 100 sccm, for 2 minutes to remove 
possible contaminants in the gas delivery system, and 
then evacuated to a vacuum. Before sputtering onto 
the substrate, the target was pre-sputtered at 3.5 Pa 
and 300 W to remove the oxide layer by Ar, until the 
plasma color became the dark blue color characteristic 
of titanium [29]. Simultaneous use of three types of 
substrates in the sputtering process is necessary to 
study the films by different techniques. Thin film 
sputtering was carried out at a pressure of 3.9 Pa 
and a power of 100 W. The volume concentration 
of nitrogen was varied from 5 to 25% in steps of 
5%. During the sputtering process, the substrates 
were maintained at room temperature, specifically 
25°C. Room temperature deposition is crucial for 
compatibility with various substrates, particularly 
those that are sensitive to heat. This expands the 
applicability of TiN thin films to a broader range of 
substrates. The film thickness for each sample was 
10 nm. This uniform thickness was achieved and 
verified using a quartz crystal microbalance (QCM), 
ensuring high precision and reproducibility across all 
experiments. 

2.3 Characterization of TiN
The chemical composition of the TiN films was 

analyzed using an X-ray photoelectron spectrometer 
(XPS) with a monochromatic X-ray source Al-Kα 
radiation at 1486.6 eV (NEXSA, Thermo Scientific). 
Raman spectra and AFM images were acquired using 
a Solver Spectrum instrument from NT-MDT, using 
red He-Ne laser with a wavelength of 633 nm and a 
diffraction grating with spectral resolution of 4 cm-1 
for Raman measurements. 

Results and Discussion

3.1. Surface morphology analysis
The change in the microstructure of TiNx thin 

films mainly depends on the Ar/N2 ratio in the 
sputtering gas [27]. Figure 1 shows AFM images of 
TiNx thin films synthesized at different sputtering gas 
concentrations. 

Figure 1 shows that the surface of the films is 
rather rough with a number of globular structures 
of 10-15 nm in diameter. Statistical analysis of 
the AFM data revealed that the root mean square 
roughness, which is one of the dispersion parameters 
characterizing roughness, changes from 0.960 nm to 
0.796 nm for 10 and 25 % of N2, respectively. Thus, 
higher Ar concentration leads to a decrease in surface 
roughness, which may be due to an increase in the 
intensity of ion bombardment of the target, resulting 
in more uniform film growth. The main reason is the 
aggregation of small particles and reduction of grain 
boundaries during deposition, which leads to surface 
roughness [27]. Another roughness parameter is 
kurtosis which is a measure of the sharpness of the 
peaks on the sample surface. Thus, the comparison 
of these values – 21.46 and 9.48 for 10 and 25% N2 
samples – additionally indicates that the Ar/N2 ratio 
affects the roughness of the resulting TiNx films.

3.2. The structural characteristics of thin films
Figure 2 shows the Raman spectroscopy results 

for TiNx thin films deposited at different N2 gas 
concentrations. All samples studied demonstrate 
similar Raman spectra where the Raman bands at 
175, 315, and 603 cm-1 are related to the transverse 
acoustic (TA), longitudinal acoustic (LA), and 
transverse optical (TO) and longitudinal optical (LO) 
TiN modes, respectively[30-33]. These characteristic 
Raman bands serve as critical indicators of the 
structural integrity and composition of the TiN films, 
confirming the successful synthesis of TiN thin films 
under various N2 gas concentrations.
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Figure 1 – AFM analysis of surface morphology of TiNx thin films deposited on silicon substrate  
with (a) 10% and (b) 25% N2 concentration

 
Figure 2 – Raman spectra of TiNx thin films on Al substrate deposited at (a) different N2 gas concentration  

and (b) deconvolution of Raman spectra for 25% N2 gas concentration

It is also noteworthy that there is a change in 
the peak intensity of these Raman bands when the 
amount of nitrogen is changed during the sputtering 
process. The change in peak intensity as a function 
of the amount of nitrogen during sputtering indicates 
non-stoichiometric characteristics of the thin films. 
The ratio of Raman peak areas (TO + LO)/(TA + 
LA) can provide information about the nitrogen 
concentration in nonstoichiometric TiNx [24,31]. The 

highest nitrogen concentration is observed at N2=15% 
((TO + LO)/(TA + LA)=1.5). When even 5% N2 is 
introduced, the nitrogen concentration remains at a 
relatively high level (((TO + LO)/(TA + LA)=1.4). 
Increasing the nitrogen concentration above 15% 
does not lead to an increase in its concentration in the 
composition of TiN films.

Figure 3 shows the X-ray Photoelectron 
Spectroscopy (XPS) analysis of TiN deposited on a 
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silicon substrate. This analysis offers valuable insights 
into the chemical composition and bonding states of 
the TiN thin film. In the XPS spectrum shown in Figure 
4, characteristic peaks corresponding to the core levels 
of titanium and nitrogen can be seen. In addition, it can 
be seen that the obtained films contain oxygen. 

For a more detailed view of the chemical 
composition, peak-fitted XPS core level spectra 
analysis was performed in both the Ti 2p and N 1s 
regions for TiN films deposited under two different 
conditions: at 5% and 25% N2 concentration, as 
displayed in Figure 4.
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Figure 3 – XPS analysis of TiN film on silicon substrate

 
Figure 4 – Deconvoluted Ti 2p XPS peak of TiN on a silicon substrate at (a) 5% and (b) 25% N2 gas concentrations,  

and deconvoluted N 1s XPS peak at (c) 5% and (d) 25% N2 gas concentrations
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As shown in Figure 4, increasing the nitrogen 
concentration in the reactive gas mixture affects 
the structural properties of the film. There is a 
significant reduction in the area of the Ti-O peak at 
binding energies around 457 eV when the nitrogen 
content is increased to N2=25%, as compared to 
N2=5%. This reduction suggests a decrease in the 
amount of oxygen in the film. Additionally, the 
intensity of the Ti-N peak also decreases, which 
is consistent with the results obtained from Raman 
spectroscopy analysis. In summary, it can be 
assumed that increasing the nitrogen concentration 
in the reactive gas mixture leads to a more active 
interaction of oxygen with nitrogen (NOx), which 
reduces the amount of oxygen ions during the 
sputtering of the target material, and leads to a 
decrease in the oxygen content within the thin 
films [34-36]. However, the oxygen content in the 
films remains high for all samples, which can be 
explained by the surface oxidation of TiN thin films 
during vacuum breakage. As reported by Piallata 
et al., low-temperature vacuum break leads to bulk 
oxidation of the substrates [37]. Additionally, 
Jaeger et al. have reported that oxygen can react 
with TiN to form titanium oxides or oxynitrides, 
which possess a different electronic structure 
compared to pure TiN. Oxygen contamination 
complicates the quantitative analysis of TiN XPS 
spectra. The formation of titanium oxides or 
oxynitrides results in the overlapping of spectral 
characteristics, making it difficult to accurately 
determine the composition and electronic structure 
of the TiN sample [38]. These findings provide 
valuable insights into the chemical composition 
and potential oxygen-related defects in TiN thin 
films, contributing to a deeper understanding of 
their formation, properties and behavior [39]. 

Conclusion

In this work, the complex processes of the 
formation of titanium nitride (TiN) thin films using 
reactive magnetron sputtering and the effect of argon 
and nitrogen concentration in the gas mixture were 
investigated. The results indicate that changing the Ar/
N2 ratio in the gas mixture for sputtering has a significant 
effect on the surface morphology of TiN thin films. 
In particular, with increasing argon concentration, a 
smoother surface of the films is observed, which is 
explained by the enhanced ion bombardment of the 
target material and, thus promoting a more uniform 
growth of the films. Structural analysis conducted 
using Raman spectroscopy has demonstrated that 
the nitrogen content in TiN films varies depending 
on the concentration of N2. Specifically, an increase 
in the N2 concentration in the reactive gas up to 15% 
leads to an enhancement of nitrogen concentration 
in the TiNx films. However, further increases in the 
nitrogen concentration result in a reduction of nitrogen 
content in the thin films. Concurrently, this increase 
in nitrogen concentration contributes to a decrease in 
oxygen content, which is confimed by XPS data. Thus, 
this study significantly extends the understanding 
of the synthesis of TiN thin films and has practical 
implications for the development and improvement 
of materials for various applications, including 
microelectronics, optics, and surface coatings, among 
others.
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