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Exploring nonlinear vacuum electrodynamics beyond maxwell’s equations

Abstract. In this article, we provide a review of the current state of the research on the nonlinear 
electrodynamics of vacuum in the presence of strong electromagnetic fields. We discuss the parametrized 
post-Maxwellian formalism that can be facilitate calculations in the weak electromagnetic field 
approximation. The post-Maxwellian parameters are a set of parameters used in non-linear electrodynamics 
to describe the behavior of electromagnetic fields in the presence of strong fields. We also discuss the 
equations for the electromagnetic field in the Born-Infeld electrodynamics and in non-linear Heisenberg-
Euler electrodynamics, as well as the exact solution in the form of a plane elliptically polarized wave. We 
represent the Lagrangian of nonlinear electrodynamics in vacuum in detail. We demonstrate that the 
Lagrangian can be expressed as a series of integer powers of invariants J1 and J2, which allows for the 
identification of nonlinear electrodynamics that are consistent with experiments carried out in a weak 
electromagnetic field.
Finally, for methodological purposes, the article emphasizes the importance of the systematic 
implementation of the calculation of nonlinear electrodynamics effects, regardless of any nonlinear theory. 
Such an approach can facilitate a deeper understanding of the underlying physics and contribute to the 
development of novel experimental techniques.
Key words: nonlinear electrodynamics of vacuum, strong magnetic field, post-Maxwelian parameters, 
Euler-Heisenberg formalism, Born-Infeld formalism.

Introduction

In recent years, significant progress has been 
made in comprehending the behavior of 
electromagnetic fields in regimes characterized by 
strong fields, where the influence of nonlinear effects 
becomes prominent [1, 2]. The phenomenon of 
vacuum polarization stands as a firmly established 
concept within quantum field theory. It arises due to 
the realization that the vacuum is not truly devoid of 
particles but rather filled with virtual particles that 
incessantly appear and disappear. When subjected to 
a strong electromagnetic field, these virtual particles 
can be influenced by the field's strength, leading to 
the creation of observable real particles. Extensive 

theoretical and experimental investigations have 
been conducted on this effect, which stands as a well-
established prediction of quantum electrodynamics 
[3]. Its thorough examination has yielded crucial 
insights into fundamental physical processes, 
including the Casimir effect, the Lamb shift, and the 
anomalous magnetic moment of the electron [4].

The Born-Infeld theory is a theoretical 
framework in physics that was initially proposed by 
Max Born and Leopold Infeld in 1934 as an endeavor 
to address certain shortcomings in classical 
electrodynamics [5]. This theory suggests a 
modification to the classical Maxwell's equations [6] 
by introducing a nonlinear term into the 
electromagnetic field strength tensor. The purpose of 
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this modification is to circumvent the issue of infinite 
self-energy encountered in classical electrodynamics, 
which poses a significant problem.

Born-Infeld theory has since been applied to 
various fields in physics such as particle physics, 
cosmology, and string theory. In particle physics, it 
is used to describe the dynamics of electrically 
charged particles such as electrons and positrons [7]. 
In cosmology, it has been used to model the behavior 
of the universe during the early stages of its 
evolution. In string theory, Born-Infeld theory has 
been used to describe the dynamics of branes, which 
are objects that are extended in more than three 
dimensions [8–10].

Research on Born-Infeld theory has been ongoing 
for decades, with many physicists working to develop 
a better understanding of its implications and 
applications. Some recent research has focused on the 
use of Born-Infeld theory in the study of black holes
[11–15] and the behavior of gravitational waves. 
Other researchers have investigated the possibility of 
using Born-Infeld theory to explain the behavior of 
dark matter and dark energy, which are still poorly 
understood phenomena in modern physics. The study 
of Born-Infeld theory continues to be an active area 
of research in theoretical physics [7, 16–18]. 
Furthermore, the values of its Post-Maxwellian 
parameters (PMP) theory were measured with high 
accuracy in works on the experimental verification
[19]. In addition, these PMP values were calculated 
[20] during the study of light birefringence in a two-
dimensional resonator, and the birefringence in a 
strong magnetic field was evaluated [21–24]. There 
are several works on the polarization of light in 
compact objects by using PMP of BI NED of vacuum
[12, 18, 25–29].

However, the Born-Infeld theory is just one of the 
several proposed nonlinear electrodynamics theories 
of vacuum. In recent years, another proposed theory 
is the effective Lagrangian of the electromagnetic 
field due to the polarization effect of the electron-
positron vacuum by electromagnetic fields, as 
predicted by quantum electrodynamics [9, 30–34]. 
The Heisenberg-Euler (HE) theory has also gained 
significant attention due to its potential implications 
in high-energy physics, such as the study of strong 
electromagnetic fields in the vicinity of black holes 
or in the early universe [13, 15, 35, 36]. Deflection 
angles of light in the equatorial plane are computed 
analytically by considering BI NED and HE theory 
separately. Additionally, by that the delay times due 
to light polarization were also calculated [12, 37–40]. 

In addition to the two main formalisms of vacuum 
NED, there are also works that review other theories 
and their applications [18, 39, 41]. These works focus 
on the main characteristics and features of other 
models of vacuum NED. The above-mentioned and 
other scientific works provide a general overview of 
the theories of nonlinear electrodynamics of the 
vacuum, and information about the PMP and their 
characteristics and physics is given in a small way. 
Therefore, their extraction and characterization of 
their physics is highly effective for a deeper study of 
the nonlinear electrodynamics of the vacuum.

In this work, we provide a comprehensive review 
of the post-Maxwellian parameters, their 
characteristics, and the underlying physics in the 
context of the Born-Infeld and Heisenberg-Euler 
theories, which are the primary frameworks within 
nonlinear vacuum electrodynamics. It is crucial to 
consider theories or calculations that align with 
observational results to gain insights into the nature 
of the geometry surrounding astrophysical black hole 
candidates and to assess the validity of the theory [40, 
42, 43]. A detailed examination of the derivation and 
solution of the field equations based on the Born-
Infeld and Euler-Heisenberg theories, as well as an 
exploration of the magnitudes and physical 
implications of the post-Maxwellian parameters 
within these theories, significantly contributes to the 
study of nonlinear electrodynamics in vacuum. 

In the first part of the article, we focus on the 
basis of nonlinear electrodynamics and its two 
formalisms, Lagrangians. In the next second part, we 
summarize the features and equations of Born-Infeld 
nonlinear electrodynamics. In the third part, we will 
focus on the main properties and equations of 
Heisenberg-Euler formalism and post-Maxwellian 
formalism. At the end of the section, we review the 
article and conclude.

The lagrangians of the ned of vacuum

Nonlinear electrodynamics consists of two 
sections: nonlinear optics, which studies nonlinear-
electromagnetic processes occurring in material 
media, and nonlinear vacuum electrodynamics, 
which studies similar processes occurring in vacuum 
in the presence of strong electromagnetic fields. 
Nonlinear optics and its effects are currently widely 
used in conducting various theoretical and 
experimental studies in different fields of physics. 
Devices based on these effects have found their 
application in practical uses. Nonlinear vacuum 
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electrodynamics, however, is much less well-known. 
As is well known, Maxwell’s electromagnetism in 
vacuum is a linear theory. Its predictions on a wide 
range of questions are constantly being confirmed 
with increasing accuracy. It was precisely based on 
the study of phenomena in Maxwell’s 
electromagnetism that the special theory of relativity 
was created, changing the understanding of space and 
time that existed in Newtonian mechanics until that 
time [8]. However, a number of fundamental physical 
considerations suggest that Maxwell’s 
electromagnetism represents only the first 
approximation of a more general nonlinear vacuum 
electrodynamics, applicable in the limit of weak 
electromagnetic fields, when the magnitude of the 
electromagnetic fields B and E is significantly 
smaller than the characteristic quantum 
electrodynamics value Bq, where m0 is the electron 
mass, e - is the modulus of its charge, and h - is the 
Planck constant. Currently, there are two nonlinear 
generalizations of Maxwell’s equations that are most 
well-known in the scientific literature. One of them 
was proposed in the 1930s by Born and Infeld. Born-
Infeld nonlinear electrodynamics, based on the ideas 
used, is a classical theory and is based on a 
Lagrangian[5, 9, 31, 44–46]:

𝐿𝐿𝐿𝐿 = − 1
4𝜋𝜋𝜋𝜋𝑎𝑎𝑎𝑎2 

��1 + 𝑎𝑎𝑎𝑎2(𝐁𝐁𝐁𝐁𝟐𝟐𝟐𝟐 − 𝐄𝐄𝐄𝐄𝟐𝟐𝟐𝟐) − 𝑎𝑎𝑎𝑎4(𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩)2 − 1� (1)

where a - is a constant with dimensions inverse to the 
dimensions of the magnetic field induction. Another 
nonlinear generalization of vacuum electrodynamics 
is a direct consequence of the polarization effect of 
the electron-positron vacuum by electromagnetic 
fields. In the first non-vanishing approximation of 
perturbation theory of quantum electrodynamics, the 
effective Lagrangian of the electromagnetic field for 
the case of weak electromagnetic fields has the form
[18, 30, 32, 47]:

L=- 1
8π
�B2-E2�+ α

360π2B2
q
��B2-E2�

2
+7(BE)2� (2)

where 𝛼𝛼𝛼𝛼 =  𝑒𝑒𝑒𝑒2/ℏ𝑐𝑐𝑐𝑐 =  1/137 is the fine structure 
constant. For a long time, nonlinear vacuum 
electrodynamics had no experimental confirmation 
and was therefore perceived by many as an abstract 
theoretical model. Nowadays, its status has 
significantly changed. Experiments on inelastic 
scattering of laser photons on gamma rays, carried 
out at the Stanford Linear Accelerator, confirmed that 
electrodynamics in vacuum is indeed a nonlinear 

theory [48]. Therefore, its various predictions that are 
available for experimental verification deserve the 
most serious attention.

The born-infeld formalism

Born-Infeld electrodynamics has a number of 
interesting properties. Firstly, the selfenergy of a 
point charge in this theory is a finite quantity. 
Secondly, the speed of electromagnetic signals in this 
electrodynamics, although dependent on the 
magnitudes of the fields B2 and E2, does not exceed 
the speed of light in Maxwell’s electrodynamics
[5,7,16]. And third, this theory is closely related to 
Einstein’s idea of introducing a non symmetric
metric tensor 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ≠  𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , the symmetric part of 
which is the usual metric tensor gik, and the 
antisymmetric part is the electromagnetic field tensor 
Fik [37, 49 −53].

Gik=gik+aFik                           (3)

Using tensor algebra relationships, it can be 
shown that:

𝐺𝐺𝐺𝐺 =  𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 ∥ 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∥=
= 𝑔𝑔𝑔𝑔 �1 − 𝑎𝑎𝑎𝑎2

2
𝐹𝐹𝐹𝐹(2) −

𝑎𝑎𝑎𝑎4

2
𝐹𝐹𝐹𝐹(4) + 𝑎𝑎𝑎𝑎4

2
𝐹𝐹𝐹𝐹2(2)�           (4)

where g is the determinant of the metric tensor, 𝐹𝐹𝐹𝐹2  =
 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ·  𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐹𝐹𝐹𝐹4  =  𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ·  𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘  ·  𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚  ·  𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 are the 
invariants of the electromagnetic field tensor [38]. In 
the absence of a gravitational field and using 
Cartesian coordinates of an inertial reference frame, 
the quantities involved in this relationship have the 
following form [36]:

𝑔𝑔𝑔𝑔 = −1,𝐹𝐹𝐹𝐹(2) = 2(𝐸𝐸𝐸𝐸2 − 𝐵𝐵𝐵𝐵2), 
𝐹𝐹𝐹𝐹(4) = 2(𝐸𝐸𝐸𝐸2 − 𝐵𝐵𝐵𝐵2)2 + 4(𝐵𝐵𝐵𝐵 · 𝐸𝐸𝐸𝐸)2            (5)

Therefore, using (4), the Lagrangian(1)[10, 44] 
can be written as:

𝐿𝐿𝐿𝐿 = − 1
4𝜋𝜋𝜋𝜋𝑎𝑎𝑎𝑎2

�√−𝐺𝐺𝐺𝐺 − �−𝑔𝑔𝑔𝑔�                  (6)

It should also be noted that Born-Infeld 
electrodynamics can also be derived from more 
general supersymmetric theories [16]. Thus, the 
Born-Infeld electrodynamics in many respects is a 
distinguished theory. At achievable fields in 
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terrestrial laboratories, the values of a2E2 and a2B2 are 
significantly smaller than one. In this case, the 
Lagrangian (1) can be expanded in small parameters 
a2E2 << 1 and a2B2 << 1 [37].

𝐿𝐿𝐿𝐿 = −
1

8𝜋𝜋𝜋𝜋 
(𝐵𝐵𝐵𝐵2 − 𝐸𝐸𝐸𝐸2) +

+ 𝑎𝑎𝑎𝑎2

32𝜋𝜋𝜋𝜋 
{(𝐵𝐵𝐵𝐵2 − 𝐸𝐸𝐸𝐸2)2 + 4(𝐵𝐵𝐵𝐵 ⋅ 𝐸𝐸𝐸𝐸)2}              (7)

The first part of this expansion represents the 
Lagrangian of Maxwell’s electrodynamics, while the 
remaining part is a correction to it, linear in the small 
parameters mentioned. The equations governing the 
behavior of the electromagnetic field in nonlinear 
electrodynamics are comparable to those found in 
continuum electrodynamics:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑  𝐻𝐻𝐻𝐻 =
1
𝑐𝑐𝑐𝑐
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

,  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕 = 0, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑  𝐸𝐸𝐸𝐸 = 1
𝑐𝑐𝑐𝑐
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵𝐵𝐵 = 0 (8)

differing from them in the form of the constitutive 
equations:

𝜕𝜕𝜕𝜕 = 4𝜋𝜋𝜋𝜋 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

, 𝐻𝐻𝐻𝐻 = −4𝜋𝜋𝜋𝜋 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

              (9)

Substituting the Lagrangian of Born-Infeld 
electrodynamics into these expressions, we obtain [9, 
54]:

D��⃗ =
𝐸𝐸𝐸𝐸�⃗ +a2(B��⃗ E��⃗ )B��⃗

� 1+a2(B2����⃗ - E��⃗
2
)-a4(B��⃗ E��⃗ )2

,

H��⃗ = B��⃗ -a2(B��⃗ E��⃗ )E��⃗

�1+a2(B2����⃗ - E��⃗
2
)-a4(B��⃗ E��⃗ )2

             (10)

The most important dynamic invariant of 
nonlinear electrodynamics of Born-Infeld is the
energy-momentum tensor of the free electromagnetic 
field [26, 51].

Tik= 1
8πa2Q

�2a2Fik
(2)+gik�2 - a2J2 - 2Q�� (11)

Here, J2 = FikFki , J4 =  Fik FknFnm Fmi are the 
invariants of the electromagnetic field, and

𝑄𝑄𝑄𝑄 = �1 − 𝑎𝑎𝑎𝑎2𝐽𝐽𝐽𝐽2
2
− 𝑎𝑎𝑎𝑎4𝐽𝐽𝐽𝐽4

4
is a function of the 

invariants.

The next is one of the exact solutions of nonlinear 
electrodynamics of Born-Infeld, where the source is 
a point electric charge q. It is known that in linear 
electrodynamics of Maxwell, this problem exhibits a 
divergence problem of the proper energy and proper 
mass of the charged point particle. To verify this, let 
us consider a point particle and calculate the energy 
of the field created by it. A straightforward 
calculation yields the following expressions for a
point charged particle located at the origin of the 
coordinates [7, 10, 44]:

𝜌𝜌𝜌𝜌 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑟𝑟𝑟𝑟), 𝐸𝐸𝐸𝐸�⃗ = 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟3

  ,𝜑𝜑𝜑𝜑 = 𝑞𝑞𝑞𝑞
𝑟𝑟𝑟𝑟
            (12)

Substituting these expressions into the expression 
for the energy of the electrostatic field, we arrive at a 
divergence:

ε= 1
8π∫ dV V

E��⃗
2
= 1

8π∫ r2dr∫ sin θdθ∫ dφ q2

r4
2π

0
π

0 = q2

2
1
0

∞
0 =∞ (13)

The same result is obtained when using an 
alternative formula for the energy of an electrostatic 
field [36]:

ε=
1
2
�𝜌𝜌𝜌𝜌(𝑟𝑟𝑟𝑟)𝜑𝜑𝜑𝜑(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

= 1
2 ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞

−∞
𝛿𝛿𝛿𝛿(𝑟𝑟𝑟𝑟)
𝑟𝑟𝑟𝑟
⟹𝑞𝑞𝑞𝑞2

2
∙ 1
0

= ∞           (14)

Since the energy of a particle is proportional to 
its mass, a point particle should have infinite mass. 
This result from solving the problem in linear 
Maxwell’s electrodynamics contradicts experimental 
data. From the expressions for the energy, it can be 
noticed that the main reason for the divergence of the 
energy of the electrostatic field of a particle is the 
rapid growth of the 𝜑𝜑𝜑𝜑 ~ 1

𝑟𝑟𝑟𝑟
 ,𝐸𝐸𝐸𝐸 ~ 1

𝑟𝑟𝑟𝑟2
with respect to r → 

0. Therefore, a very small
neighborhood of the point r = 0 gives an infinite 

contribution to the value of integrals (13) and (14).
In the Born-Infeld nonlinear electrodynamics, the 

nonlinearity of the equations is ”switched on” in the 
region of strong fields and suppresses the unlimited 
growth of the field. Indeed, consider a point particle. 
Since the problem has spherical symmetry, in this
case the Born-Infeld equations of nonlinear 
electrodynamics take the form [5, 10, 45, 55]:
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1
𝑟𝑟𝑟𝑟2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟

[𝑟𝑟𝑟𝑟2𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟] = 4𝜋𝜋𝜋𝜋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑟𝑟𝑟𝑟), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑 𝐸𝐸𝐸𝐸�⃗ = 0 (15)

From the first equation of this system, it follows 
that Dr = q / r2. The material equation in the static 
spherical symmetric case is:  𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟 = 𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

�1−𝑎𝑎𝑎𝑎2𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟2
. Solving 

this equation for E, we get: 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟

�1−𝑎𝑎𝑎𝑎2𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟2
.

Substituting the explicit expression for Dr into the 
right side, we will have: 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 𝑞𝑞𝑞𝑞

�𝑟𝑟𝑟𝑟2+𝑎𝑎𝑎𝑎2𝑞𝑞𝑞𝑞2
. Let's explore 

this expression. At r >> a|q|, it takes on the Coulomb 
form 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 𝑞𝑞𝑞𝑞

𝑟𝑟𝑟𝑟2
, while remaining finite at 𝑟𝑟𝑟𝑟 → 0:  𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 =

𝑞𝑞𝑞𝑞/(|𝑞𝑞𝑞𝑞|𝑎𝑎𝑎𝑎). Therefore, the energy of the electrostatic 
field of a point charged particle in nonlinear Born-
Infeld electrodynamics is also a finite quantity.

Heisenberg-euler and post-maxwellian 
formalism

Next, we consider the nonlinear electrodynamics 
of vacuum, which is a consequence of quantum 
electrodynamics, called Heisenberg-Euler 
electrodynamics. In this theory, the effective 
Lagrangian of the field has the form in (2). The 
electromagnetic field equation in non-linear 
Heisenberg-Euler electrodynamics without sources is 
similar to the macroscopic equation of continuum 
electrodynamics [30, 44, 57, 58]:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑 𝐻𝐻𝐻𝐻��⃗ =
1
𝑐𝑐𝑐𝑐
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕��⃗
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕��⃗ = 0,𝜕𝜕𝜕𝜕��⃗ =
4𝜋𝜋𝜋𝜋𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸�⃗

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑 𝐸𝐸𝐸𝐸�⃗ = − 1
𝑐𝑐𝑐𝑐
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�⃗
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵𝐵𝐵�⃗ = 0, 𝐻𝐻𝐻𝐻��⃗ = 4𝜋𝜋𝜋𝜋𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�⃗

. (16)

Using expression (2), it is easy to obtain 
expansions of the vectors D and H in powers of B/Bq

and E/Bq with a first-order post-Maxwellian accuracy
[41, 46]:

𝜕𝜕𝜕𝜕��⃗ = 𝐸𝐸𝐸𝐸�⃗ +
𝛼𝛼𝛼𝛼

45𝜋𝜋𝜋𝜋𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞2
�2�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2�𝐸𝐸𝐸𝐸�⃗ + 7�𝐵𝐵𝐵𝐵�⃗ 𝐸𝐸𝐸𝐸�⃗ �𝐵𝐵𝐵𝐵�⃗ �,

𝐻𝐻𝐻𝐻��⃗ = 𝐵𝐵𝐵𝐵�⃗ + 𝛼𝛼𝛼𝛼
45𝜋𝜋𝜋𝜋𝜕𝜕𝜕𝜕𝑞𝑞𝑞𝑞2

�2�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2�𝐵𝐵𝐵𝐵�⃗ + 7�𝐵𝐵𝐵𝐵�⃗ 𝐸𝐸𝐸𝐸�⃗ �𝐸𝐸𝐸𝐸�⃗ �. (17)

The system of electromagnetic field equations in 
nonlinear electrodynamics of Heisenberg Euler has 
an exact solution in the form of a plane elliptically 
polarized wave [49]:

𝐸𝐸𝐸𝐸�⃗ = 𝐸𝐸𝐸𝐸�⃗1 cos�Ω𝑑𝑑𝑑𝑑 − 𝐾𝐾𝐾𝐾��⃗ 𝑟𝑟𝑟𝑟� + 𝐸𝐸𝐸𝐸�⃗ 2 sin�Ω𝑑𝑑𝑑𝑑 − 𝐾𝐾𝐾𝐾��⃗ 𝑟𝑟𝑟𝑟�,

�𝐸𝐸𝐸𝐸�⃗1𝐸𝐸𝐸𝐸�⃗ 2� = 0, 𝐵𝐵𝐵𝐵�⃗ =
𝑐𝑐𝑐𝑐
Ω
�𝐾𝐾𝐾𝐾��⃗  𝐸𝐸𝐸𝐸�⃗ �,

Ω2

𝑐𝑐𝑐𝑐2
= 𝐾𝐾𝐾𝐾��⃗ 2 ,

  �𝐾𝐾𝐾𝐾��⃗  𝐸𝐸𝐸𝐸�⃗1� = �𝐾𝐾𝐾𝐾��⃗  𝐸𝐸𝐸𝐸�⃗ 2� = 0.                 (18)

The invariants of this wave are equal to zero.
The parametrized post-Maxwellian 

electrodynamics of vacuum is considered as a 
generalization of nonlinear models in the case of 
weak fields [9,39]. There are other models of 
nonlinear electrodynamics. Modern experiment 
cannot decide which theory is the most adequate to 
nature. To choose nonlinear electrodynamics, the 
most adequate to nature, it is necessary to calculate 
nonlinear effects in various theories and compare 
their predictions with the results of the corresponding 
experiments. To facilitate such calculations in the 
weak electromagnetic field approximation, we 
propose to use the parametrized post-Maxwellian 
formalism, which in a certain sense is similar to the 
parametrized post-Newtonian formalism in the 
theory of gravity, used to calculate various 
gravitational effects in the weak field of the solar 
system [9,38,41]. We assume that the main premise 
of such a formalism is that the Lagrangian of 
nonlinear electrodynamics in vacuum is an analytic 
function of the invariants 𝐽𝐽𝐽𝐽1 = (𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2)/𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞2 and 

𝐽𝐽𝐽𝐽2 = �𝐸𝐸𝐸𝐸�⃗ 𝐵𝐵𝐵𝐵�⃗ �
2

/𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞4, at least in the vicinity of their zero 
values. Therefore, in the case of a weak 
electromagnetic field 𝐽𝐽𝐽𝐽1 ≪ 1, 𝐽𝐽𝐽𝐽2 ≪ 1 this Lagrangian 
can be expanded in a series in integer powers of these 
invariants [10, 26, 38]:

ℒ = 𝜕𝜕𝜕𝜕𝑞𝑞𝑞𝑞2

8𝜋𝜋𝜋𝜋
∑ ∑ 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐽𝐽𝐽𝐽1𝑚𝑚𝑚𝑚 𝐽𝐽𝐽𝐽2𝑚𝑚𝑚𝑚∞

𝑚𝑚𝑚𝑚=0
∞
𝑚𝑚𝑚𝑚=0              (19)

Since at 𝐽𝐽𝐽𝐽1 → 0, 𝐽𝐽𝐽𝐽2 → 0 the theory with the 
Lagrangian (2) must pass into Maxwell’s 
electrodynamics, then 𝜕𝜕𝜕𝜕00 = 0, 𝜕𝜕𝜕𝜕10 = 1 . With this 
approach, each nonlinear electrodynamics will 
correspond to a well-defined set of post-Maxwellian 
parameters 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . From the point of view of 
experiments performed in a weak electromagnetic 
field, one nonlinear electrodynamics will differ from
another only in the values of these parameters.

Thus, post-Maxwellian formalism, abstracting 
from the details of this or that nonlinear 
electrodynamics, from its equations, hypotheses and 
postulates, in a word, from everything that makes up 
its complete theoretical scheme, takes only the final 
result: the expansion of the Lagrangian, which, 
according to this theory, is valid in the weak 
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electromagnetic field approximation. Further 
analysis of theories and elucidation of the 
correspondence of their predictions with the results 
of experiments is of a general nature and formally 
comes down to answering two questions: what are the 
values of the post-Maxwellian parameters of the 
theory under study and what are these parameters 
according to the results of the corresponding 
experiments. Therefore, one of the tasks facing this 
formalism is the task of identifying those nonlinear 
electrodynamics that are consistent with experiments 
carried out in a weak electromagnetic field [18, 26].

However, no less important, from our point of 
view, is the opportunity provided by this formalism 
for the systematic implementation of the calculation 
of nonlinear electrodynamic effects, regardless of 
any nonlinear theory: the task of theory and 
experiment in this case should not only be the search 
for one or another effect that will refute that or other 
non-linear electrodynamics, but also systematic 
calculation and setting up experiments in order to test 
the hypothesis about the analyticity of the Lagrangian 
in the vicinity of 𝐽𝐽𝐽𝐽1 = 0, 𝐽𝐽𝐽𝐽2 = 0 and subsequent 

determination with the required accuracy of the 
values of all post-Maxwellian parameters [9, 36, 51].

As a result of the implementation of this forma-
lism, a generalized post-Maxwellian theory of the 
electromagnetic field can be constructed, capable of 
describing all experiments in a weak electromagnetic 
field. It is quite obvious that this theory cannot 
answer many questions about the properties of 
nonlinear electromagnetic interaction, and its main 
purpose will be only to describe one of the limiting 
cases of exact nonlinear electrodynamics - the weak
electromagnetic field approximation [18, 57].

After the successful implementation of this 
formalism, any nonlinear electrodynamics that 
claims to be an adequate description of reality will 
have to pass into this post-Maxwellian theory in the 
limit of a weak electromagnetic field. Since it is quite 
obvious that with the current level of development of 
experimental technology, such a program can be 
implemented only with respect to the first few 
coefficients of expansion (19), we write the 
expression, restricting ourselves to only the accuracy 
necessary for our purposes [9, 45, 47, 55].

ℒ =
1

8𝜋𝜋𝜋𝜋
�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2� + 𝜉𝜉𝜉𝜉 �𝜂𝜂𝜂𝜂1�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2�

2
+ 4𝜂𝜂𝜂𝜂2�𝐸𝐸𝐸𝐸�⃗ 𝐵𝐵𝐵𝐵�⃗ �

2
� + 𝜉𝜉𝜉𝜉2 �𝜂𝜂𝜂𝜂3�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2�

3
+ 𝜂𝜂𝜂𝜂4�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2��𝐸𝐸𝐸𝐸�⃗ 𝐵𝐵𝐵𝐵�⃗ �

2
� +

+ 𝜉𝜉𝜉𝜉3 �𝜂𝜂𝜂𝜂5�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2�
4

+ 𝜂𝜂𝜂𝜂6�𝐸𝐸𝐸𝐸�⃗ 2 − 𝐵𝐵𝐵𝐵�⃗ 2�
2
�𝐸𝐸𝐸𝐸�⃗ 𝐵𝐵𝐵𝐵�⃗ �

2
+ 𝜂𝜂𝜂𝜂7�𝐸𝐸𝐸𝐸�⃗ 𝐵𝐵𝐵𝐵�⃗ �

4
�                                  (20)

wher e 𝜉𝜉𝜉𝜉 = 1/𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞2 , and 𝜂𝜂𝜂𝜂1, 𝜂𝜂𝜂𝜂2, 𝜂𝜂𝜂𝜂3, 𝜂𝜂𝜂𝜂4, 𝜂𝜂𝜂𝜂5, 𝜂𝜂𝜂𝜂6, 𝜂𝜂𝜂𝜂7 –
dimensionless post-Maxwellian parameters. In the 
Born-Infeld theory, these parameters have the form
[5, 26, 47, 49]:

𝜂𝜂𝜂𝜂1 =
𝑎𝑎𝑎𝑎2𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞2

32𝜋𝜋𝜋𝜋
, 𝜂𝜂𝜂𝜂2 =

𝑎𝑎𝑎𝑎2𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞2

32𝜋𝜋𝜋𝜋
, 𝜂𝜂𝜂𝜂3 = −

𝑎𝑎𝑎𝑎4𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞4

64𝜋𝜋𝜋𝜋
,  

𝜂𝜂𝜂𝜂4 = −
𝑎𝑎𝑎𝑎4𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞4

16𝜋𝜋𝜋𝜋
,  𝜂𝜂𝜂𝜂5 =

5𝑎𝑎𝑎𝑎6𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞6

512𝜋𝜋𝜋𝜋
,  𝜂𝜂𝜂𝜂6 =

3𝑎𝑎𝑎𝑎6𝐵𝐵𝐵𝐵𝑞𝑞𝑞𝑞6

64𝜋𝜋𝜋𝜋
,

  𝜂𝜂𝜂𝜂7 = −𝑎𝑎𝑎𝑎6𝜕𝜕𝜕𝜕𝑞𝑞𝑞𝑞6

32𝜋𝜋𝜋𝜋
                     (21)

In nonlinear Heisenberg-Euler electrodynamics, 
only the following parameters are known [30, 37,
39]:

𝜂𝜂𝜂𝜂1 = 𝛼𝛼𝛼𝛼
360𝜋𝜋𝜋𝜋2

, 𝜂𝜂𝜂𝜂2 = 𝛼𝛼𝛼𝛼
90𝜋𝜋𝜋𝜋2

.               (22)

and the rest can be found using higher 
approximations of the perturbation theory of 
quantum electrodynamics. If we insert equation (20) 
into the equation of nonlinear electrodynamics and 

look for the solution further, we get the values of the 
post-Maxwellian parameters up to the 4th power of ξ.
We get two solutions of the resulting eikonal 
equation. Therefore, due to the nonlinear 
electrodynamics of the vacuum, it is determined that 
in the presence of a homogeneous field, light 
propagates in the form of two possible plane 
electromagnetic waves with two different 
frequencies [38]:

𝜔𝜔𝜔𝜔1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �1 +
16𝜋𝜋𝜋𝜋𝜂𝜂𝜂𝜂1𝜉𝜉𝜉𝜉
𝑐𝑐𝑐𝑐2

�2𝑐𝑐𝑐𝑐�𝑐𝑐𝑐𝑐�⃗ �𝐸𝐸𝐸𝐸�⃗ 0𝐵𝐵𝐵𝐵�⃗ 0�� − �𝑐𝑐𝑐𝑐�⃗ 𝐵𝐵𝐵𝐵�⃗ 0�
2

− �𝑐𝑐𝑐𝑐�⃗ 𝐸𝐸𝐸𝐸�⃗ 0�
2
��,

𝜔𝜔𝜔𝜔2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �1 + 16𝜋𝜋𝜋𝜋𝜂𝜂𝜂𝜂2𝜉𝜉𝜉𝜉
𝑖𝑖𝑖𝑖2

�2𝑐𝑐𝑐𝑐�𝑐𝑐𝑐𝑐�⃗ �𝐸𝐸𝐸𝐸�⃗ 0𝐵𝐵𝐵𝐵�⃗ 0�� − �𝑐𝑐𝑐𝑐�⃗ 𝐵𝐵𝐵𝐵�⃗ 0�
2
−

�𝑐𝑐𝑐𝑐�⃗ 𝐸𝐸𝐸𝐸�⃗ 0�
2
��,                            (23)

which, in general, are different, not additive, 
proportional ξ. Proceeding to the analysis of the 
obtained relations (19), we note, first of all, that at 
𝜂𝜂𝜂𝜂1 = 𝜂𝜂𝜂𝜂2 the expressions for 𝜔𝜔𝜔𝜔1 and 𝜔𝜔𝜔𝜔2 coincide with 
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the accuracy of the terms proportional to 𝜉𝜉𝜉𝜉2. In this 
case, electromagnetic waves of only one type can 
propagate in each direction. This means that 
nonlinear electrodynamics, whose post-Maxwellian 
parameters satisfy the relation 𝜂𝜂𝜂𝜂1 = 𝜂𝜂𝜂𝜂2 , is in some 
sense a separate theory among other nonlinear 
electrodynamics. An example of such a theory, in 
particular, is electrodynamics of Born-Infeld, the 
post-Maxwellian parameters of which satisfy the 
specified relation. If we used the exact expression (2) 
for the Lagrangian [5], and not its post-Maxwell 
expansion, it would lead to the exact dispersion 
equation [12, 18, 44, 58, 59]:

𝜔𝜔𝜔𝜔1 = 𝜔𝜔𝜔𝜔2 =
=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �1 + 𝑎𝑎𝑎𝑎2

2𝑖𝑖𝑖𝑖2
�2𝑐𝑐𝑐𝑐�𝑐𝑐𝑐𝑐�⃗ �𝐸𝐸𝐸𝐸�⃗ 0𝐵𝐵𝐵𝐵�⃗ 0�� − �𝑐𝑐𝑐𝑐�⃗ 𝐵𝐵𝐵𝐵�⃗ 0�

2
− �𝑐𝑐𝑐𝑐�⃗ 𝐸𝐸𝐸𝐸�⃗ 0�

2
�� (24)

which shows that in Born-Infeld electrodynamics, in 
the presence of constant and homogeneous 
electromagnetic fields, only one type of 
electromagnetic waves can propagate in each
direction [37].

Nonlinear vacuum electrodynamics is a theory 
created to solve some fundamental problems in 
Maxwell’s electrodynamics. For example, in 
Maxwell’s theory, the electromagnetic mass of a 
point charge, due to the infinite value of the energy 
of the electrostatic field, will be infinite, which 
contradicts the experiment. This problem can be 
solved by adding additional nonlinear terms to the 
Lagrangian linear theory. However, there is a certain 
arbitrariness in the choice of nonlinear Lagrangian 
terms, so it is considered optimal to consider the 
socalled parametrized post-Maxwellian formalism of 
nonlinear vacuum electrodynamics, where a certain 
set of parameters corresponds to each selected type 
of nonlinearity. Thus, it becomes possible to classify 
and group various variants of the theory according to 
the emerging effects and degree of complexity of 
nonlinear processes in them, depending on the 
number and magnitude of PMPs. PMPs usually 
correspond to the coefficients before the nonlinear 
terms of the Lagrangian. At the same time, the
physics of nonlinear electrodynamic processes 
becomes more complicated as it approaches the 
critical value of the magnetic field Bq caused by 
quantum electrodynamics.

In the simplest Born-Infeld (BI) nonlinear theory, 
𝜂𝜂𝜂𝜂1 = 𝜂𝜂𝜂𝜂2 ∼  4.1 · 10−6, other parameters are equal to 
zero. This is explained by the fact that the nonlinear 
effects of the theory solve a minimal number of 
problems inherent in the linear theory. In the case of 
NED of HE, there are two parameters, and this theory 
is already consistent with quantum electrodynamics 
in the one-loop approximation, and birefringence 
also appears there. In any case, it is necessary to test 
the nonlinear post-Maxwellian theory on the basis of 
experiments or astrophysical observations, the 
essence of which is to check the values of the post-
Maxwellian parameters.

Summary and Discussion

So, in this work, we analyzed two main theories 
of nonlinear vacuum electrodynamics. First, we 
considered their Lagrangians and focused on their 
main characteristics. Based on the type of 
Lagrangians, we took the basic field equations of 
each theory and determined the features of the post-
Maxwellian parameters PMPs in them. We have 
shown that the PMPs are equal according to BI theory 
and that it is a simple theory. We have shown that the 
PMPs in the GE theory, which is a consequence of 
quantum electrodynamics, have two different values 
and the solutions of the field equation according to 
this theory. At the same time, we determined that the 
basic laws and parameters in the post-Maxwellian 
formalism depend on the nature of the chosen theory. 
At the same time, we have shown that the physics of 
post-Maxwellian parameters depends on their 
magnitude and the type of that formalism. In the 
future, the information in this work can be used as a 
necessary object for further in-depth study of 
nonlinear electrodynamics.
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