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Abstract. In this paper, we have investigated the dark energy cosmological model in the presence 
of anisotropic fluid in Kaluza–Klein metric with generalized time-dependent lambda Λ=αH2 + 
βS2 (α, β are free parameters; H is Hubble parameter and S is normal scale factor). Considering 
the equation of state (EOS) p = ωρ for normal dimensions and pψ= (ω+δ)ρ for the fifth dimension, 
exact solutions of Einstein field equations of the anisotropic model are obtained (where p - the 
pressure for normal dimensions, pψ – the pressure of the fifth dimension, ρ - density of the fluid, 
ω - EOS parameter, and δ -skewness parameter). It is concluded that the universe at its early stage 
shows anisotropic behavior due to its finite value δ. The variations of ω and δ  demonstrate the 
evolution from radiation dominated early universe to a dark energy-dominated universe. We have 
also investigated dark energy density, pressure, and other physical parameters. The physical 
parameters are dependent on free parameters and power index factor n which relates the extra 
dimension scale factor to the normal scale factor. 
Key words: Dark energy, Cosmological constant, Equation of state, Kaluza-Klein Cosmological 
model, Exact solution. 

 
 
Introduction 
 
The present arena of the universe showcases that 

it consists of 68% of dark energy (DE), 28% dark 
matter (DM), and 4% visible matter. The existence of 
dark energy has been confirmed through the 
accelerated expansion of the universe, illustrated by 
the High-Z supernova search team led by Reiss et al 
[1] and the supernova cosmology project headed by 
Perlmutter et al [2]. Recently, the expected data 
through Dark Energy Spectroscopic Instrument 
(DESI) survey explains the nature of dark energy [3-
5] which is yet to be cracked.  Another constitute of 
the universe, dark matter (DM) is also a mystery. In 
1937, Zwicky [6] identified the discrepancy between 
observed and predicted galactic rotational curves and 
suggested that it could be due to the presence of DM.  
In the present scenario, the existence of DE and DM 
has been well established, but the mystery of their 
nature remains unsolved.  This has prompted many 
cosmologists to explore the study of models with 
dark energy fluid. Cheng et al [7], and Jain [8] have 
studied dark energy–dark matter interactive models 

with varied perspectives. These interactive DE-DM 
models are studied extensively nowadays. 

This paper explores a cosmological model with a 
generalized time-dependent cosmological constant 
(Λ) in the presence of anisotropic dark energy fluid 
in the Kaluza-Klein metric.   

Cosmological studies have been revealed by 
assuming the universe consists of fluid modeled with 
the equation of state (EOS) ω = p/ρ (p - pressure, ρ - 
density of the fluid), the values of which have been 
utilized to study different phases of the universe [9]. 
In this regard, DE EOS ω is considered to be equal to 
-1.  Jimenez, Usmani, et al, & Amendola [10-12] 
have suggested quintessence and phantom forms of 
dark energies models with ω >-1 & ω< -1 
respectively. Gorbunova & Timoshkin [13], and Das 
et al [14] have proposed theoretical models with 
time-dependent ω which is yet to be confirmed 
experimentally. Melia [15] put forward supernova 
cosmological project results with the new constraints 
on ω given by ≈ -1.05 ±.09 for a flat universe. The 
experimental observations for luminosity distance, 
high redshift, and galaxy clustering conclude with 
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values of -1.44 <ω< -0.92 at a 68% confidence level 
[16-17]. In this regard, Wellar & Lewis [18] have 
concluded with similar results. These constraints on 
depicting the existence of dark energy and the 
variation of pressure in different directions bring out 
the anisotropic nature of the universe.  The presence 
of a small anisotropy in the current isotropic scenario 
has also been concluded through the study of minute 
temperature variations observed at the Cosmic 
Microwave Background (CMB) level [19]. This is 
supposed to contain information about early universe 
phenomena, phase transition, etc. Microwave Aniso-
tropy Probe (MAP) [20] and COBRAS-SAMBA 
(Planck surveyor) [21], BAO-SDSS (Baryon 
Acoustic Oscillation –Sloan Digital Sky Survey) 
(Eisenstein et al, 2005) [22] experimental results led 
to a further study of anisotropy in CMBR radiations.  

Various Bianchi-type anisotropic dark energy 
models, FRW isotropic & anisotropic models have 
been dealt with by studying the nature of dark energy 
in the current scenario [23-31]. These models have 
explained the dynamics of dark energy in the 
anisotropic universe, considering parameterized ω (t) 
and introducing skewness parameters (δ) in different 
directions. 

Berman [32], Koivisto & Mota [33] investigated 
the models with variations of the Hubble parameter 
in the absence of a cosmological constant (Λ). 
Several other forms of dark energy models in the 
absence of cosmological constant have also been 
investigated in quintessence, braneworld, f(R) 
gravity, scalar field, etc. [34-37] 

Recent studies and experimental observations in 
cosmology do consider the significance of the 
cosmological constant that has been first introduced 
by Einstein and is now known to be physically 
significant with dark energy [38]. An excellent 
review of the cosmological constant by Weinberg 
[39] and Sahni [40] has revealed that the 
cosmological constant has been plagued with a 
cosmological constant puzzle (CCP). The CCP has a 
discrepancy of about 120 orders between its 
cosmological observed value and the calculated one 
at the Planck level. Overduin & Cooperstock, [41]; 
Chen & Wu  [42], and Carvalho et al [43] have 
tackled this problem by investigating 4D FRW 
models with time-dependent lambda varying with H2, 
R-m, qH2 (q – deceleration parameter), or αH2+βR-2 
(generalized lambda). Here, the cosmological 
constant varies with the time-dependent scale factor. 
Considering time-dependent lambda in Einstein-
Hilbert action, the diffeomorphism invariance 

implies the modification of Einstein field equations.  
But these modifications led to the explanation of the 
accelerated expansion of the Universe [44-45].  

The dark energy model with a generalized 
lambda has successfully dealt with age, low-density 
problems, and the presence of anisotropy in the 
universe's cosmic background. However, shortfalls 
of 4D models in dealing with CCP and cosmological 
coincidence problems have led cosmologists to 
search for an alternative in the higher dimensional 
field. 

With the upsurge of string theory, 5D models 
have gained popularity for their simplicity which can 
not only explain early universe phenomena but also 
can depict present universe scenarios.  In this regard, 
Kaluza [46] first put forth five-dimensional models 
to unify gravitational and electromagnetic forces, and 
later Klein [47] employed gauge theory to explain the 
five-dimensional theory. In this regard, Wesson P 
[47] proposed the space-time-matter theory or 
induced matter theory which helps in the explanation 
for the unification of gravity and weak forces.   

The original Kaluza-Klein theory placed two 
very strong constraints on the fifth dimension, 
namely, (i) that all partial derivatives concerning the 
fifth coordinate are zero (cylinder condition), and (ii) 
that the fifth dimension has a closed short-scale 
topology (compactification condition). The most 
important consequences of these conditions are that 
no change in 4-dimensional physical quantities can 
be ascribed to the presence of an extra spatial 
dimension and that such a fifth dimension is 
unobservable at low energies. Condition (ii) was also 
a vital ingredient in the attempt to explain the 
quantization of electric charge. It is interesting to note 
that condition (ii) prevents whatever microscopic 
object from spanning the fifth dimension [48]. The 
extra dimensions were thought to be lower than the 
Planck scale and so could not be tested 
experimentally but its effect can be experienced [49].  

In this regard, the existence of the Kaluza-Klein 
particles can confirm the presence of an extra 
dimension. Considering the fifth dimension as a 
scalar function  φ  in the form of a circle of radius r 
and its Fourier expansion results in higher orders of 
the functions or towers of massive modes. These are 
termed Kaluza-Klein excitations or are also identified 
as K-K particles [50-51]. One of the constituents of 
dark matter has been supposed to be K-K particles 
since its constituents are still unknown to us.   

A rich literature on Kaluza-Klein cosmological 
models is now available which has been studied in 
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various contexts. The Kaluza-Klein models with 
different forms of matter in the presence of 
generalized lambda (Λ = αH2+βR-2) have been 
investigated by Chodos & Detweiler [52], Singh et al 
[53], and Jain et al [54-57]. These models have 
demonstrated the effects of extra dimensions on the 
nature of dark energy and various physical 
parameters.  Milton [58] & Radar [59] have 
concluded the correlation between dark energy and 
extra dimension.  Some cosmologists [60-63] have 
studied Kaluza-Klein cosmology with anisotropic 
dark energy in the absence of lambda, explaining the 
universe in late times. These models have been 
inspirational for the present study of the anisotropic 
model.  

With the above motivation, we have investigated 
the cosmological model in the Kaluza-Klein metric 
in the presence of time-varying lambda. We have 
examined DE cosmological model with anisotropic 
fluid by introducing skewness parameter δ in EOS of 
extra-dimension. This led to the study of directional 
dark energy fluid.  This paper is organized into six 
sections. With the introduction in the first section; 
metric and field equations are discussed in section 2. 
Solutions of field equations and some physical 
parameters are obtained in sections 3 and 4 
respectively, followed by discussion and conclusion 
in sections 5 and 6 respectively.  

 
Metric and Field equations  
 
To find the Einstein field equation, we consider 

the Kaluza-Klein metric [55] as given below 
 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = −𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 + 

+𝑆𝑆𝑆𝑆2(𝑡𝑡𝑡𝑡) �
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2

1 − 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟2
+ 𝑟𝑟𝑟𝑟2𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + 𝑟𝑟𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2� + 

+𝐴𝐴𝐴𝐴2(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓2.                             (1) 
 
Here S(t), and A(t) are fourth and fifth-dimension 

scale factors respectively, k is the curvature constant 
which is equal to 0,1 and -1 for flat, closed, and open 
universes respectively., and energy-momentum 
tensor for the anisotropic model [62] for the above 
metric is given as below, 

 
𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇𝑇𝑇00,𝑇𝑇𝑇𝑇11,𝑇𝑇𝑇𝑇22,𝑇𝑇𝑇𝑇33,𝑇𝑇𝑇𝑇44) = 

= 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � −𝜌𝜌𝜌𝜌,𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝜓𝜓𝜓𝜓�.                    (2) 
 
Whereρ, p and pψ are the DE fluid's density, 

pressure, and extra dimension pressure respectively. 

EOS for normal dimensions has been assumed to be 
p = ωρ,ω is the equation of state parameter (for 
normal dimensions), while pψ = (ω+δ)ρ for extra-
dimension, and is the skewness parameter 
introducing the deviation from isotropy.  Hence,  

 
𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ( −𝜌𝜌𝜌𝜌 ,ωρ,ωρ,ωρ, (ω + δ)ρ ),  (3) 
 
ω and δ may not necessarily be constants.  
Einstein’s field equations are arrived at by the 

following equation: 
 

𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 −
1
2
𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 = −8𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 + Λ𝛿𝛿𝛿𝛿𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 .         (4) 

 
In deriving Einstein’s field equation we assume 

8πG = c = 1 and using ansatz for metric potentials 
[56 and references therein] A = Rn, field equations 
derived from Eq.(4) are given below : 

 

𝐺𝐺𝐺𝐺11 = (𝑠𝑠𝑠𝑠 + 2)
�̈�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

+ 

+(𝑠𝑠𝑠𝑠2 + 𝑠𝑠𝑠𝑠 + 1) �̇�𝑆𝑆𝑆
2

𝑆𝑆𝑆𝑆2
+ 𝑘𝑘𝑘𝑘

𝑆𝑆𝑆𝑆2
= −𝑝𝑝𝑝𝑝 + Λ,               (5) 

 
 𝐺𝐺𝐺𝐺44 = 3 �̈�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
+ 3 �̇�𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆2
+ 3 𝑘𝑘𝑘𝑘

𝑆𝑆𝑆𝑆2
= −𝑝𝑝𝑝𝑝𝜓𝜓𝜓𝜓 + Λ,         (6)  

 
𝐺𝐺𝐺𝐺55 = 3(𝑠𝑠𝑠𝑠 + 1) �̇�𝑆𝑆𝑆

2

𝑆𝑆𝑆𝑆2
+ 3 𝑘𝑘𝑘𝑘

𝑆𝑆𝑆𝑆
= 𝜌𝜌𝜌𝜌 + Λ.          (7) 

 
These field equations are rewritten as, 
 

(𝑠𝑠𝑠𝑠 + 2)
�̈�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

+ (𝑠𝑠𝑠𝑠2 + 𝑠𝑠𝑠𝑠 + 1)
�̇�𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆2
+
𝑘𝑘𝑘𝑘
𝑆𝑆𝑆𝑆2

= 
= −𝜔𝜔𝜔𝜔𝜌𝜌𝜌𝜌 + Λ ,                       (8) 

 
3 �̈�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

+ 3 �̇�𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆2
+ 3 𝑘𝑘𝑘𝑘

𝑆𝑆𝑆𝑆2
= −(𝜔𝜔𝜔𝜔 + 𝛿𝛿𝛿𝛿)𝜌𝜌𝜌𝜌 + Λ.         (9)                          

  
3(𝑠𝑠𝑠𝑠 + 1) �̇�𝑆𝑆𝑆

2

𝑆𝑆𝑆𝑆2
+ 3 𝑘𝑘𝑘𝑘

𝑆𝑆𝑆𝑆2
= 𝜌𝜌𝜌𝜌 + Λ .            (10)                          

 
Divergence of Einstein’s tensor has been given 

by, 
 

�𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 −
1
2
𝑅𝑅𝑅𝑅𝛿𝛿𝛿𝛿𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖�;𝑗𝑗𝑗𝑗

= �−𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 + Λ𝛿𝛿𝛿𝛿𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖�;𝑗𝑗𝑗𝑗
= 0.     (11)                          

 
From the above equation, the energy 

conservation equation [62] is obtained as: 
 
�̇�𝜌𝜌𝜌 + (𝜌𝜌𝜌𝜌 + 𝑝𝑝𝑝𝑝)3 �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
+ (𝜌𝜌𝜌𝜌 + 𝑝𝑝𝑝𝑝𝜓𝜓𝜓𝜓)𝑠𝑠𝑠𝑠 �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
+ Λ̇ = 0.   (12)  
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Substituting p = ω ρ and p = (ω+δ) ρ in equation 
(11), it is further simplified as: 

 
�̇�𝜌𝜌𝜌 + (1 + 𝜔𝜔𝜔𝜔)(3 + 𝑠𝑠𝑠𝑠) �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
+ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
+ Λ̇ = 0 .      (13) 

 
Eq. (13) can be separated into two equations. One 

equation contains a deviation-free parameter and the 
other has a skewness parameter so that the presence 
of anisotropic conditions in the present isotropic 
universe can be explained. The two equations are:  

  
�̇�𝜌𝜌𝜌 + (1 + 𝜔𝜔𝜔𝜔)(3 + 𝑠𝑠𝑠𝑠) �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
= 0.              (14) 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
+ Λ̇ = 0.                         (15) 

         
The solution of field equations is obtained in the 

next section by substituting Λ = 𝛼𝛼𝛼𝛼 �̇�𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆2
+ 𝛽𝛽𝛽𝛽 1

𝑆𝑆𝑆𝑆2
  in the 

above equation. 
 
Solution of field equations 
There are three independent equations (field 

equations) and S, ρ, ω, δ, and Λ are five independent 
variables. So the solution of field equations is 
obtained with the help of time-dependent lambda i.e. 
Λ = 𝛼𝛼𝛼𝛼 �̇�𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆2
+ 𝛽𝛽𝛽𝛽 1

𝑆𝑆𝑆𝑆2
 , where α and β are free parameters. 

Subtracting equation (8) from equation (9) we 
get, 

 
−𝑠𝑠𝑠𝑠𝜌𝜌𝜌𝜌 = (1 − 𝑠𝑠𝑠𝑠) �̈�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆
+ (2 − 𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠2) �̇�𝑆𝑆𝑆

2

𝑆𝑆𝑆𝑆2
+ 2𝑘𝑘𝑘𝑘

𝑆𝑆𝑆𝑆2
 .     (16) 

 
Equation (15) is rewritten as, 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜌𝜌𝜌𝜌 �̇�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

= −Λ̇ .                       (17) 
 
Now consider Λ = 𝛼𝛼𝛼𝛼 �̇�𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆2
+ 𝛽𝛽𝛽𝛽 1

𝑆𝑆𝑆𝑆2
 , we find,   Λ̇ =

2𝛼𝛼𝛼𝛼 �̇�𝑆𝑆𝑆 �̈�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆2
− 2𝛼𝛼𝛼𝛼 �̇�𝑆𝑆𝑆3

𝑆𝑆𝑆𝑆3
− 2𝛽𝛽𝛽𝛽 �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆3
 , substituting this in Eq. (17) 

            
Eq. (17) is rewritten as, 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜌𝜌𝜌𝜌 �̇�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

= −2𝛼𝛼𝛼𝛼 �̇�𝑆𝑆𝑆 �̈�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆2

+ 2𝛼𝛼𝛼𝛼 �̇�𝑆𝑆𝑆3

𝑆𝑆𝑆𝑆3
+ 2𝛽𝛽𝛽𝛽 �̇�𝑆𝑆𝑆

𝑆𝑆𝑆𝑆3
  .        (18) 

 
Rewriting the above equation as: 
 

𝑠𝑠𝑠𝑠𝜌𝜌𝜌𝜌 = −2𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛

 �̈�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

+ 2𝛼𝛼𝛼𝛼
𝑛𝑛𝑛𝑛
�̇�𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆2
+ 2𝛽𝛽𝛽𝛽

𝑛𝑛𝑛𝑛
1
𝑆𝑆𝑆𝑆2

  .            (19) 
 

From Eq. (16) and (19) we get: 
 

�(1 − 𝑠𝑠𝑠𝑠)−
2𝛼𝛼𝛼𝛼
𝑠𝑠𝑠𝑠 �

S̈
S

+ �(2 − n − n2) +
2α
n �

�̇�𝑆𝑆𝑆2 
𝑆𝑆𝑆𝑆2

+ 

+2 �𝛽𝛽𝛽𝛽
𝑛𝑛𝑛𝑛

+ 𝑘𝑘𝑘𝑘� 1
𝑆𝑆𝑆𝑆2

=  0.                  (20) 
 
Simplifying the above Eq., we get: 
 
S̈
S

+
��n2−n−2�−2αn �

�(𝑛𝑛𝑛𝑛−1)+2𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 �
�̇�𝑆𝑆𝑆2 
𝑆𝑆𝑆𝑆2
−

2�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛+𝑘𝑘𝑘𝑘�

�(𝑛𝑛𝑛𝑛−1)+2𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 �
1
𝑆𝑆𝑆𝑆2

= 0 .   (21) 

 

Assuming 𝑚𝑚𝑚𝑚 =  
��n2−n−2�−2αn �

�(𝑛𝑛𝑛𝑛−1)+2𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 �
, 𝑘𝑘𝑘𝑘1 =  

2(βn+k)

�(𝑛𝑛𝑛𝑛−1)+2𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛 �
  , 

Eq.(20) is simplified as, 
 

S̈
S

+ 𝑚𝑚𝑚𝑚 �̇�𝑆𝑆𝑆2 
𝑆𝑆𝑆𝑆2
− 𝑘𝑘𝑘𝑘1

1
𝑆𝑆𝑆𝑆2

= 0 .               (22) 
  
The above equation is a homogeneous second-

order equation. The first-order integral equation is 
obtained by integrating the above equation and is 
given by, 

 
�̇�𝑆𝑆𝑆2 = 𝐴𝐴𝐴𝐴1𝑆𝑆𝑆𝑆−2𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑘𝑘1

𝑚𝑚𝑚𝑚
 .                  (23) 

 
where A1 is the constant of integration. We consider 
m = -1/2 to deal with present observational data. The 
solution of the above equation is obtained as: 

 
𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 2𝑘𝑘𝑘𝑘1

𝐴𝐴𝐴𝐴1
+ 𝐴𝐴𝐴𝐴1

4
(𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐)2 .              (24) 

 
In the above equation, c is the constant of 

integration. Constant A1 and c can be determined by 
initial conditions.  At t =0 let S(t) =0 then  𝑐𝑐𝑐𝑐 = −8𝑘𝑘𝑘𝑘1

𝐴𝐴𝐴𝐴12
 

, Let us assume c = -t0, for simplicity, Thus the above 
equation is rewritten as: 

 
𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 2𝑘𝑘𝑘𝑘1

𝐴𝐴𝐴𝐴1
+ 𝐴𝐴𝐴𝐴1

4
(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0)2 .              (25) 

 
Other physical parameters are obtained in the 

following section. 
 
Determination of physical parameters 
Other physical parameters i.e. H, q, ω and δ are 

determined using Eq. (25) as follows: 
  

𝐴𝐴𝐴𝐴(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡) = �2𝑘𝑘𝑘𝑘1
𝐴𝐴𝐴𝐴1

+ 𝐴𝐴𝐴𝐴1
4

(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0)2�
𝑛𝑛𝑛𝑛

 .   (26)      
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𝐻𝐻𝐻𝐻 = 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)

2�2𝑘𝑘𝑘𝑘1𝐴𝐴𝐴𝐴1
+𝐴𝐴𝐴𝐴14 (𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2�

.                    (27) 

 
𝑞𝑞𝑞𝑞 =  −𝑆𝑆𝑆𝑆�̈�𝑆𝑆𝑆

�̇�𝑆𝑆𝑆2
= −�1

2
+ 4𝑘𝑘𝑘𝑘1

𝐴𝐴𝐴𝐴12(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2�.             (28) 
 
Substituting equation (10) and rewriting it we get, 
   

𝜌𝜌𝜌𝜌 = [3(𝑠𝑠𝑠𝑠 + 1) − 𝛼𝛼𝛼𝛼] �̇�𝑆𝑆𝑆
2

𝑆𝑆𝑆𝑆2
+ (3𝑘𝑘𝑘𝑘−𝛽𝛽𝛽𝛽)

𝑆𝑆𝑆𝑆2
         (29) 

 
 Using Eq. (25) in Eq.(28), we obtain, 
 
𝜌𝜌𝜌𝜌(𝑡𝑡𝑡𝑡) = [3(𝑠𝑠𝑠𝑠 + 1) − 𝛼𝛼𝛼𝛼]

𝐴𝐴𝐴𝐴12(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0)2

4 �2𝑘𝑘𝑘𝑘1𝐴𝐴𝐴𝐴1
+ 𝐴𝐴𝐴𝐴1

4 (𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0)2�
2 + 

+(3𝑘𝑘𝑘𝑘 − 𝛽𝛽𝛽𝛽) 1

�2𝑘𝑘𝑘𝑘1𝐴𝐴𝐴𝐴1
+𝐴𝐴𝐴𝐴14 (𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2�

2                (30) 

 
Λ(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼 𝐴𝐴𝐴𝐴12(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2

4�2𝑘𝑘𝑘𝑘1𝐴𝐴𝐴𝐴1
+𝐴𝐴𝐴𝐴14 (𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2�

2 + 𝛽𝛽𝛽𝛽 1

�2𝑘𝑘𝑘𝑘1𝐴𝐴𝐴𝐴1
+𝐴𝐴𝐴𝐴14 (𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2�

2.   (31) 

 
Substituting Eq. (8) and simplifying by using 

Eq.(29) in it, ω is calculated as, 
 
𝜔𝜔𝜔𝜔 = − ��2𝑛𝑛𝑛𝑛2+3𝑛𝑛𝑛𝑛+4�−2𝛼𝛼𝛼𝛼�𝐴𝐴𝐴𝐴12(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2+8𝑘𝑘𝑘𝑘1(𝑛𝑛𝑛𝑛+2)+8(𝑘𝑘𝑘𝑘−𝛽𝛽𝛽𝛽)

2�(3(𝑛𝑛𝑛𝑛+1)−𝛼𝛼𝛼𝛼)𝐴𝐴𝐴𝐴12(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2+4(3𝑘𝑘𝑘𝑘−𝛽𝛽𝛽𝛽)�
 .                                                                  

(32) 
       

δ is calculated from equation (16) which is given 
by, 

 
𝛿𝛿𝛿𝛿 = ��2𝑛𝑛𝑛𝑛2+3𝑛𝑛𝑛𝑛−5�𝐴𝐴𝐴𝐴12(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2+4𝑘𝑘𝑘𝑘1(𝑛𝑛𝑛𝑛−1)−8𝑘𝑘𝑘𝑘�

2�(3(𝑛𝑛𝑛𝑛+1)−𝛼𝛼𝛼𝛼)𝐴𝐴𝐴𝐴12(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2+4(3𝑘𝑘𝑘𝑘−𝛽𝛽𝛽𝛽)�
.        (33) 

 
Expansion factor θ and Shear scalar σ2 is 

determined as given below: 
 

𝜃𝜃𝜃𝜃 = 3 �̇�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

+ �̇�𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

= (𝑠𝑠𝑠𝑠 + 3) 𝐻𝐻𝐻𝐻  and, 
 

𝜎𝜎𝜎𝜎2 =
3
8�

�̇�𝑆𝑆𝑆
𝑆𝑆𝑆𝑆
−
�̇�𝐴𝐴𝐴
𝐴𝐴𝐴𝐴�

2

=
3
8

(1 − 𝑠𝑠𝑠𝑠)2𝐻𝐻𝐻𝐻2. 

 
Hence, 
 

𝜎𝜎𝜎𝜎2

𝜃𝜃𝜃𝜃
= 3(1−𝑛𝑛𝑛𝑛)2

8(𝑛𝑛𝑛𝑛+3)
𝐻𝐻𝐻𝐻 = 3(1−𝑛𝑛𝑛𝑛)2

8(𝑛𝑛𝑛𝑛+3)
� 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)

2�2𝑘𝑘𝑘𝑘1𝐴𝐴𝐴𝐴1
+𝐴𝐴𝐴𝐴14 (𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)2�

�.    (34) 

  
Discussion 
 
The present model is investigated by assuming 

directional EOS for normal and extra dimensions as 
p = ωρ and pψ= (ω+δ)ρ respectively. The solution of 
the Einstein field equation is obtained by assuming m 
= -1/2 in equation (23). From equation (25) it is 
observed that S→∞ if t→∞, leads to continuous 
expansion.  

Considering m = -1/2, it is found that α = [n 
(2n+3) (1-n)]/2 . Similarlyβ is calculated from k1. For 
k1 =1/2, β = n(n+1)(1-n)/2 – nk.  Here there are 
constraints on n i.e. n ≠ (0, -1, 1) to have a positive 
value ofΛ.  We have found α = 1/2 and β = -3/16 for 
n=-1/2. From equation (26), it is observed that the 
extra dimension decreases rapidly with time. This 
results in the compactification of extra dimensions at 
present times. For A1

2/k1 = 8, equation (27) and 
equation (28) reveal that H(t) ∝ 1/t  and q(t) → -1, 
depict the acceleration of expanding universe which 
decreases with time (Fig.1 and Fig.2).  From equation 
(30) it is observed that the density of the universe is 
proportional to 1/t2 and decreases with the advance of 
the time.  For n=-1/2, and t→t0, ω → -1, δ has a small 
negative value, indicating the presence of anisotropic 
dark energy fluid. The following graphs are plotted 
for          n = -1/2, A1 = 2, and k1 = ½ for (t-t0) > 0 for 
the flat universe to reconcile with present 
observational data [64]. 

From Fig.3 and Fig. 4, we observe that there is 
zero-crossing of ω and δ. This indicates the transition 
from radiation dominated phase to a dark energy-
dominated universe. The finite but small value of δ in 
Fig.4 points towards the presence of slight anisotropy 
in the present universe. It is also observed from 
Eq.(34) that the anisotropy factor σ2/θ →0 when t 
→t0, leads to the isotropic present universe. Fig.5 
shows that the cosmological constant decreases at 
present times. The presence of negative lambda can 
have its significance at a very early stage of the 
universe [65-66]. In Fig. 6 the fall of density at 
present times indicates the expansion of the universe.  
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Figure 1 - The plot of H v/s (t-t0 ) 
 

Figure 2 - Plot of q v/s (t-t0) 
 
 

  
 

Figure 3 - The plot of ω v/s (t-t0). 
 

Figure 4 - Plot of δ v/s (t-t0) 
 
 

  
 

Figure 5 - Plot of lambda Λ(t) v/s (t-t0) 
 

Figure 6 - Plot of rho ρ(t) v/s (t-t0) 
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Conclusion 
 
This paper has investigated the Kaluza - Klein 

anisotropic dark energy model with time-dependent 
lambda. It is found that the universe is expanding and 
accelerating but acceleration decreases with time. A 
small positive value of the cosmological constant is 
predicted in the present model. The joint effect of the 
cosmological constant and deviation parameter leads 
to an anisotropic early universe which later evolves 
as the isotropic universe.  It is also observed that the 
present universe is dominated by dark energy. The 
investigation of our model of the universe also 
demonstrates the presence of anisotropy in the 
present era due to the finite value of δ. The model  
 

also explains the evolution of the universe from 
radiation dominated phase to a dark energy-
dominated phase. Physical parameters are found to be 
dependent on n, free parameters β, demonstrating the 
impact of extra dimension and lambda on them at 
present times. 
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