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A problem with impulse actions for nonlinear ODEs

Abstract. In the paper, we consider problem with impulse actions for system of nonlinear ordinary
differential equations (ODEs) in the interval. For solving this problem we use a modification of
parameterization method by Dulat Dzhumabaev. In the modification of the method we introduce the
parameters as the values of the unknown function at the middle of the subintervals of the partition of the
considered interval. The problem with impulse actions transfers to an equivalent problem system of
nonlinear ODEs with parameters. Conditions for an existence of solution to the equivalent problem are
obtained. Existence theorem for solutions this problem is established by one generalizes a theorem of
Hadamard. We also constructed an algorithm for finding of solution to this problem. Finally, we found
conditions for solvability to the problem with impulse actions for system of nonlinear ODEs in terms of
special matrix composed by the initial data. This method can be applied to various types of nonlinear
problems with impulse actions for ODEs.
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modification of parametrization method by Dzhumabaev, solution.

1 Introduction and preliminaries

The problem with impulse actions holds a very
significant place in the theory of discontinuous
differential equations (see [1-4] and references
cited therein). Many authors investigate the
existence and uniqueness of problem impulse
actions for differential equations by using various
methods [5—11]. To the best of our knowledge only
monography [4] investigate impulsive system with
variable time of the impulse action via numerical-
analytic method, Lyapunov direct method and
Green’s function method.

In present work we consider problem with
impulse actions for nonlinear ODEs by
parameterization method by Dulat Dzhumabaev
[12] proposed for solving BVPs for ODEs and
extended to different classes of differential
equations [13-20]. We offer a modification of
parameterization method for solving to problem
with impulse actions for system of nonlinear
ODEs.

So, we consider the problem with impulse
actions for system of nonlinear ODEs in the
following form:

© 2023 al-Farabi Kazakh National University

x(t) = f(t,x), t € (0,T)\{ty, t2, ... tx}, (1)
Bx(0) + Cx(T) =d, x € R™, d € R™, (2)
x(t; +0)—x(t; —0) = s, (3)

s; ERYi=1k.

Here f : [0, T]XR™ — R™ is vector-function
with possible discontinuities at the points t = t;,
i=1,k; the (nXn)-matrices B and C are
constant matrices;

0=ty <t; <ty < ..<ty<tpsys =T,
llxIl = max|ax;|.

i=1n

Denote [, = {ty,t,, ..., ty }-
Let PC([0, T]\Ix, R™) be a space of piecewise-
continuous vector-functions with norm

lxll; = max sup [lx(®)l.
1=0k teft;tiyq)

A solution to problem with impulse actions (1)-
(3) is a piecewise-continuously differentiable on
(0,T)\I;  a function x*(t) € PC([0, T]\I, R™)
that satisfies:

* system of nonlinear ODEs (1) (at the same
time, at the points £ = 0, t =T, one-sided
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derivatives x3(0), x*(T) satisfy to system of
nonlinear ODEs (1));

* boundary condition (2);

» conditions for impulse actions (3) at the points
of the set I,.

2 A modification of parameterization
method for solving problem (1)-(3)

We split the segment [0, T] on the subintervals

as follows:
[0,T) = UrZilt;—1. ;).

Let C([0,T], I, R**D™) denote the space of
function systems

X[t] = (xl (t)! X2 (t), e X (t)! xk+1(t))’ with
elements x,:[t,_1,t,) = R™ are continuous on
[t,_1, t;) and have finite limits t_l)itm_ o x,-(t) for all

r = 1,k + 1. The space is endowed by the norm

Ix[]ll = max_ sup [lx-(Oll.
r=1,k+1 te[ty_1,ty)

The restrictions of x(t) to the partition
subintervals, denoted by x,.(t):

x-(t) = x(t) for t € [t,_1,t,), r=1k+1,
satisfy the following multi-point problem

xr = f(t, xr): t E [tr—l' t‘r‘)a r= 1,k + 1: (4)

Bx;(0) + C lim xg1 () =d, (5
xi+1(ti + 0) - t_l)ipnl() Xi(t) =S i= 1,—k (6)

We introduce a parameters as the values of the
unknown function at the middle of the subintervals:

fr =X, (tr_ztr—l)' r = 1,k + 1.
Then, we make a change of functions:
x,(t) = y,.(t) + &, on each r-th subinterval.

We transfer problem (4)-(6) to the equivalent
problem with parameters &, :

Vr = f(t, Yrt+ ’fr): te [tr—l' tr)a (7

w(5=) =0, r=Tk+L ®

By,(0) + B¢ +
+C t1>i’11:r—10 Ve+1() + Céyq = d, )

Vigr(ti +0) + &g —
— lim (O -§& =s, i=Tk  (10)
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A pair (y*[t], &*), with elements
= (1(®),y;@®), -, e (D) €

c([0,T], I, R*+Ym) and

& =(§,8, .., &) € REFDN i called a
solution to problem (7)-(10) if the functions y; (t),
r=1,k+ 1, are continuously differentiable on
[t,_1,t-) and satisfy system of nonlinear ODEs
(7), conditions (8), and relations (9), (10) with
& =&, r=1k+1.

The equivalence of problems (1)-(3) and (7)-
(10) is understood in the following sense.

Let function x*(t) be a solution to problem
with impulse actions (1)-(3), then the pair

[t ), where y*[t] = (x*(t) —

(0,1 (1) — 2" (D), ..,
X (t) _ (tk th— 1) x (t) x*(tk+12—tk))
and &= (0 (Y, (ED), ..,

*(tk_ztk—l)’ x (tk+1
with parameters (7) (10).

Vice versa, if a pair (7[¢], §) with elements
Jlt] = 31(0, §2(0), ..., Fr4a (0)) €
C([0,T], I, R*+V™) and

E=(£,8&, ... &11) € RETD™ be asolution
to problem with parameters (7)-(10), then the
function ¥(t) defined as

@) =3O + &,
telt_,t), r=1k+1,

%), is a solution of problem

and

x(T) = tiiplo i1 () + &1
is a solution of the original problem with impulse
actions (1)-(3).

In contrast to problem (4)-(6), problem with
parameters (7)-(10) have conditions (8) for the
values of the desired functions in the middle of the
subintervals [t,._q,t-), =1,k + 1.

This is the modification of the parameterization
method. We get the problem with parameters (7)-
(10), where instead of the initial conditions for the
desired function [12], appear the conditions (8)
with the values of the desired function in the
middle of the subintervals [t,_q,t,), r =1,k + 1.

This allows us to reduce the impact of the
length of subintervals [t,._q,t.),7 =1,k+ 1, on
the solvability of the problem with impulse actions
(D-(3).

Assume that &, are known forallr = 1,k + 1.
Then the problem (7), (8) will be equivalent to the
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nonlinear Volterra integral equations of the second
kind in the following form:

br=tr—

Y () = f f(r, y, (2) + & )dr |

t

telt_,T2=), r=Tk+1. (1

yr(t) = f(z, y- (1) + & )dr

br=tr—
2

te [tr frot tr), r=Tk+1. (12)

For finding the values of unknown functions
yr(t), we will use representations (11) or (12)
depending on the location of the points

t=t,, r=1k+1.

L

$1(0) = f fr,y: (@D +&)de,  (13)
0

Jim e () =

- f FT, Yier (1) + Epn )T, (14)

tk+1—tk
2

Vier(t; +0) =

Liv1—t;
2

j FT, Va1 (@) + Ei41 )T, (15)

t;

Jm () =
ti
- f fy (D) +E)de,  (16)
ti—ti—q
2
i=1,k.

Substituting representations (13)-(16) in
relations (9) and (10) instead of corresponding
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values y1(0) Yi+1(t; +0),

lim yl (v),

t-ti—

Jim e (0,
=1, k, we have

b

2
BE, +B f f, 3, (@) + & )dt + Car +

0
T
+C Jier-t F(T, Y41 (T) + §ppr )dr —d = 0, (17)
2
tit1—t;
2
| @@+ fnddr + 6
t

t

- f f(z,yi(r) + §; )dr

ti—=ti—q
2

—$i—5=0,

i =1,k (18)

Forknown y,(t) (r =1,k + 1), the system
of equations (17), (18) is a system of equations for
the parameters (&4, &5, ..., Ex41)- Let us write down
the system of equations (17), (18) in the following
form

Q¢ y) =0, (19)

§= (8,85, ., &pyq) € RUHD,
Condition E. For choosing I, the system of

nonlinear equations Q(&,0) = 0 has a solution

0 -0 0
£© = ( 1( ) 2( ) IE+)1) e Rk+Dn

Let Condition E be satisfied. Suppose that the
problem

o= (63 + &) t €[ty ). (20)
y (=) =0, r=Tk+1 ()

has a solution
v O, telte_yt), r=1Lk+1, and
system function

YOI = (yO 0,57 ®, .. 5% ©)
belongs to C([0,T], I, R+,

Given the pair (y©[t],£©®) we define a
piecewise continuous function on [0, T] :
x(O)(t) _ (O)(t) + E(O)
tet,_ut), r=1k+1,
and

xO() = lim y,g?l(t)+§,§°jl
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We choose numbers pg >0, py, >0, py >0,
and define the sets:

SEO, pe) = {§ = (&1, &3, oo 1 € REFDI:
0
le =@l = max_|l&-&7 < pe3,
S(y(o) t]'py) =
=(y[t] € C([0,T], I, R&+D™):

vl =y LIl <py 3,
S(x©(0), py) = {x(t) € PC([0, T\Ii, R™):
x|, <p. 3,

Gf(px) =
={(t,x):t € [0,T], x € S(xO(®), p,)}.

Let Condition £ hold.

Let us construct a sequence of pairs
(y™[¢], €M), m €N , according to the
following algorithm.

3 Algorithm

Stage 1.
(1) From system of equations

QG y® =0
we find
1) (1 1
5(1) _ ( 1( )’ é )’ » IE+)1) c R(k+1)n;
(2) Solving problem (7), (8) for
&=V r=Tk+1,
we find an elements of system functions

yOlel = (5 0,50, .y ).
Stage 2.

(1) From system of equations

Q¢ y™) =0
we find
() (2 () .
5(2) _ ( ( )’ 2( k+1) € RUk+Dn.
(2) Solving problem (7), (8) for
& =¢2 r=Tk+1,
we find an elements of system functions

y@1e) = (520,520, .y ©).

And, continuing this process, we get
Stage m.
(1) From system of equations

QE,y™ ) =0

we find
f(m) — (Eim) fém) (m)) € R(k+1)n
(2) Solving problem (7), (8) for

ET = é’r(m)’ r= 1Pk + 1;
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we find an elements of system functions

y™Ie = (O, 5 ©, . 7O )

m=1.2,...

Condition C. The function f (t, x) is continuous
and has a uniformly continuous partial derivative
fx(t,x) in G¢(py) and there exists a number L >
0 such that

Ifx@x) I <L
forall (t,x) € Gr(py).

4 Main result

Introduce the notation

h= max { sup (ti_ti_l —t ),
i=1,k+1 ti—-ti_1 2
te[tiy L)
ti -t

ti—ti_1
te[%,ti)

Theorem 1. Let for Iy, pg > 0, py, > 0,p, >

0, Condition E and Condition C be fulfilled, and
BQ;?J/) . R+ _y pk+Dn ;¢

(¥1t1.€) € S(y©ltl, py) %
SE©, p¢), and the inequalities are valid:

i) ”(aQ(f” ” < B, B — const;
it)q = pmax {2 h||B| + h||C||}
ti—t;_
max {eL( ) 1-L (tl 2= 1)}<1

i=1,k+1

Jacobi matrix

invertible for all

ii)) 2£-110(E@,y®)|<p¢;
L max

{eL(ti‘;i—1) _ 1}
1-qi=1k+1

1Q(E, y)lIpy;

v) (1 + Lh)pg + Lhp,, < py.

Then the sequence of pairs (y®[t],§¥), k €
N, determined by the algorithm belongs to

S(y©fe], py) X S(E(O),p;) , converges 1o
(v*[t], &) is an isolated solution of problem (7)-
(10) in S(yO[t], py) x SE©, pe)

and the following estimates hold:

v

e - £l < =l .y )],

(20)

@ -yP| < |
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g feHe) g (-
i=1k+

t) _ 1}. 1)

Proof.

Using points of impulse actions [, we divide
the interval [0, T].

Let us transfer from problem (1)-(3) to the
equivalent problem with parameters (7)-(10).

Take any pair (y[t],§) € S(y [t p,) x
S(E©, pg), then

I ©-yP®+& &) <
< v -0l +||& - &<

S Pt Py S P
t € [t_1,tr), r=1Lk+1. (22)

Using Condition C, for all r =1,k + 1, we
obtain the following inequalities:

(535 +f f(r v (1) + & )dr — r(O) _

ORI M

br—trq
2

I [ fen@+gar -

t
br—tr—1

- [ (P @+ )ar <

t

<[r+r (=)

tr—tr—1
2

[ il @90 e <
t

tr — lr—1 )]
<[1+L(Z—=—¢
_[ + ( > ,0§+

+L (2= — ) py<(1 + L)pg + Lhpy < py.

telt_,"=rt), r=Tk+1. (23)

r S;r(O)” +

&, + formtrs (T, ¥ (T) + & )dr — P —
2

y O |

fr - r(O)” +

International Journal of Mathematics and Physics 14, Nel (2023)

I [ fen@redr -

tr—tr—g
2

~ S £(2 V@ + 6 Yz || <
2

peefe===)

t

f ]

tr—tr_1
2

[14+0(e—==2) e + L (e -
— ) o< (1 + Lh)pg + Lhpy < py,
te [M tr), r=Tk+1. (24

In view of (23), (24) and inequality (v) of the
Theorem 1, the pairs (t, y,-(t) + &),

tr—tr—1

&), * f@y@+&)dr +&) and
(t, formtrs (7,7, (¥) + &, )dT +£,) belong to

Ge(py) . where (y[t], &) € S(yO[tl, p,) x
SE©, pg) for t € [t,_4,t,), r=Tk+1.

A solution of problem (7)-(10) will be found
by the proposed algorithm. Taking the pair
(yO[t], @) from Condition E as the initial
approximation, we find the next approximation
with respect to the parameter from equations

Er - r(O)” +

» @-y00| ¢ <

Q& y®) =0, &eRrEIr (25

By virtue of the conditions of the Theorem, the
operator Q(£,y®) in S(€©®,ps) satisfies all
assumptions of Theorem 1 in [13, p. 41].

We choose a number g, > 0 satisfying the
inequalities

1
wp <t 0@y @) < e
Then, using the uniform continuity of the

(O]
Jacobi matrix % in S(€©, py),

we find 8, € (O,%pf) such that for any &,& €

SEO, pg), satisfying th~e inequality
15 =1l < &

is true that

Int. j. math. phys. (Online)



28 A problem with impulse actions for nonlinear ODEs

”ao(ay@) _ 9@y £

o aE

We choose
a>ay = max{l,;io (@, y©@)|}  and

construct the following iterative process:

5(1.0) - 5(0)7
E(l,s+1) — E(l,s) _

1 (80(¢1S) @)\ 1
- (%) Q(E™2,y®), (20)
s=012,...

By Theorem 1 in [10, p. 41], the iterative
process (26) converges to 1) € S(g‘(o),pf), is an
isolated solution of the equation

Q& Yy =0

and

6~ £@] < plaE .y @) < pe. @7

Under our assumptions, the Cauchy problem
(7), (8) with &, = r(l) on [t,_q,t,) has a unique
solution yr(l) (t) and it satisfies the inequality

WO -y 00| <

b=ty

<i [ (e -2

+ @ -0 @) ax
telt_,T0=2), r=Tk+1. (29

WO -5 <
t

<t [ (e -
+ [P @ -9 @|)
te[%, tr), r=Tk+1. (29)

Using the Gronwall-Bellman inequality, we
have

R GESAIO] =
< (eL(tr—ztr—l_t) _ 1) | r(l) _ ’fr(O) ”’
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telt_, =), r=Tk+1. (30
GRS O] =
< <eL(t—tr‘2#) _ 1) W _ 50 |

te|™=, ). r=Tk+1. ()

From the inequalities (23), (24) we get that
yOle) = (5P 0,557 ©, .73 ©)

€ S(y©ltl, py).
Using the structure of the operator Q (&, y)

and the equality Q(¢™,y®) =0,

we have
Ble(E®,yM)| =
ZﬁllQ(f(l),y(l)) — Q(f(l),y(o))” <
< Bmax {2, h||B|| + hlIC||}
tr—ty—

max (I, * L [»@ -

W@ dr feen L V@ -
2

»O@|| ar ) .

Substituting instead of yr(l) (r) — yr(o) (1) ”

the right-hand sides of (30), (31) and
calculating integrals, we have

Bl W,y D) < qllg® -] (32

We take p; = B||Q(§®,yD)]|.

If & eSEWM,p,), then by virtue of
inequalities (7i), (iii) of Theorem and (27), (32),
we have the estimate

1§ =&l <[lg = §@[ + ¢ - @ <

<Blo(®. YD) + e - £ <

< (g +D[E® - @<

110,y @) < pe.

<1-q

Le. S(f(l)f pl) c S(E(O)f pf)

The operator Q(&,y™M) in S(¢W, p;) satisfies
all conditions of Theorem 1 [13, p. 41]. Therefore,
the iterative process

5(2,0) — 5(1),
E(Z'S-‘-l) — f(z,s) _

1 (80(£@S) y W)\ 71
- - (%) Q(¢@9,yM), (33)
s=012,..,
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converges to §@ e (&M, p,), is an isolated
solution of the equation

Q¢ yM) =0

and

l§® — @l < BloE@,y D). 34y

From here and from (32) it follows that
||g(2) — 5(1)” < q||f(1) — 5(0)”. (35)

Assuming that the pair (y™][t], M) €

Sy @Itl py) x SE@, pe)
is defined and the following estimates

||f(m_1) _ f(m_z)” < qm—1||$r(1) _ 5(0)”, (36)

Bllo(sn,ym0)] <
< gfjgtm=m — g2, (37)

are hold.
The mth approximation with respect to the
parameter &™) can be found from the equation

Q@Y™ M) =o.
Using (36), (37) and the equality

Qg ytm2) =0,
similarly to (32) we establish the inequality

Blle(etm-1, ym-D)|| <
< @™ E® - O], (38)

We take ppm_y = B|Q(§1, y =D
and show that S(E™~V, p. 1) c S(E(O),pg).
Indeed, in view of (36)-(38) and inequality (ii5)
of Theorem, we have
€ - €01 < fl - 0] +
+||f(7n—1) - §(7n—2)” 4ot
+[|§@ = £OY < pry +
_|_qm—2||f(1) - 5(0)” 4ot
||g(1) — Sr(O)” <
<@ '+ +q+ 1)”5(1) — 5(0)||<
<L [lo(c®,y®)| < .

Since Q(f) y(m—l)) in S(f(m_l)) pm—l)
satisfies all conditions of Theorem 1 [13, p. 41],
then there exists E™ e S(E™M-D p

is a solution of the equation

Q¢ y™my=0
and the estimate
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lg™ — gmD] < gllo(EmD,ym )]l 39)

Solving the Cauchy problem (7), (8) for

& = ﬁm) , we find the functions

y ™), telty_pt,), r=Tk+1.

If pp = B||Q(€™,y™)||=0, then
Q(¢m,ym) =o.

Hence, taking into account that yr(m) ()
is a solution to the Cauchy problem (7), (8)

with &, = ﬁm) on [t,_i,t.), r=1k+1, we
obtain an equalities
By™(0) + BEM™ +
+€ lim y @O+ 67 =4,
yi(-‘r-r;) (t; +0) + fi(_‘r-nl) -
= dim y™ @ - g™ =5, i=Tk,
i.e. the pair (y(™[t],€™) is a solution to
problem (7)-(10).

Using (38), (39) and the Gronwall-Bellman
inequality, we set the estimates

ORI O] [

< (eL(tr—;fr—l_t) _ 1) ﬁm) _ #(m-1)
telt, "=, r=Tk+1, (1)

= r

R OEPRARI O] =
< (eL(t‘tr_?_l) _ 1) I

te[™=, ), r=Tk+1. @4

(m) _ (m-1)
T r

From inequalities (40)-(42) and g < 1

it follows that the sequence of pairs
(y™[t],E(M)) as m — oo converges to

(y*[t],€*) is a solution to problem (7)-(10).
Moreover, by virtue of inequalities iii) and iv)
Theorem 1, the pairs (y™][t],§(™)), m € N, and
(y*[t],€7) belong to S(y[t], py) x SE©, pe).

Passing to the limit as [ — oo in the
following inequalities

o - £ < £ gllo(®, ),
[ GESERIG] =
< (eL(tr—Ztr—1_t) _ 1) r(m+z) _ r(m)”’

Int. j. math. phys. (Online)



30 A problem with impulse actions for nonlinear ODEs

R GESAI O] =

< (eL(t‘tr_zﬁ) - 1)

tr—ty— ——
tePLfi,q) r=1k+1,

we obtain the estimates (20), (21).

The isolation of the solution is proved similarly
proof in Theorem 1 [13, p. 42].

The Theorem 1 is proved.

Since problem (1)-(3) and problem (7)-(10) are
equivalent, the following assertion holds.

Theorem 2. Assume that the conditions of
Theorem 1 are fulfilled.

Then problem (1)-(3) has an isolated solution

in S(xO(), py).

o0 _ )]

5 Conclusion

In this paper, we offered a modification of the
parameterization method by Dzhumabaev for
solving problem with impulse actions for system of
nonlinear ODEs in the interval. This technique can
be applied to various kinds of differential equations
with discontinuities [18-20].
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