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Theory of energy loss of charged projectiles in magnetized one-component plasmas

Abstract. The polarizational stopping power of an electron fluid is studied within the quantum random-
phase approximation using the canonical solutions of the Hamburger moment problem for the loss function.
The loss function is not an even function here of the frequency as in, for example, non-magnetized one-
component plasma. Since the loss function is proportional to the inverse longitudinal dielectric function we 
can deduce that it is a response function possessing consequtive properties. The moments are calculated 
using RPA longitudinal dielectric function and the asymptotic expansion of the polarization functions.
Polarization function is written in terms of generalized Laguerre polynomial, Landau energy level and 
Fermi-Dirac distribution. The chemical potential in the Fermi-Dirac distribution obtained from the 
normalization condition. The final expression for the stopping power contains only one integral of the 
square of the Bessel function of some integer order and only two summations, one of which is a finite sum.
Key words: polarizational stopping power, Hamburger moment problem, loss function, method of 
moments, magnetized one-component plasmas.

Introduction

A number of authors have reduced the 
polarizational stopping power of a one-component 
plasma in a homogeneous constant magnetic field 
( )0,0, BB to the imaginary part of the 

longitudinal (along k) component of its dielectric 

tensor. If we introduce cylindrical variables along 
the magnetic induction B and consider the stopping 
of a heavy projectile of a charge Ze penetrating 
the system with a velocity w so that 
( ) = cosBw ϑ⋅w B , we can write for the stopping 
power the following expression, see [1-5] and 
references therein:
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where we have introduced the (first kind) Bessel 
function of integer order ν and the loss function 

( ) ( )1, = Im , /L ω ε ω ω−−k k            (3)
with

z⊥ +k = k k and = cosz ck wω ϑ νω+

which we calculate here in the random-phase 
approximation (RPA). Notice that 

( ) ( ) ( )= 1 , ,J y J yν
ν ν ν− − ∈

and that 2 2= x yk k k⊥ + and 2 2=zk k⊥−k are the 

wavevector k components orthogonal and parallel 
to the vector B ; we limit our consideration here to 
the stopping power of a Fermi electron liquid, so that 

cω is the electronic cyclotron frequency.
The idea of the present work is to apply for the 

loss function the canonical solution of the 
corresponding Hamburger moment problem and to 
simplify the theoretical expressions. The canonical 
solution we refer to here does not take into account 
the processes of energy dissipation in the electron 
fluid, which is consistent with the traditional 
polarizational (loss-function) approach to the 
evaluation of the plasma stopping power [6]. We will 
choose this canonical solution using the power 
frequency moments of the loss function (3),

( ) ( )1= , , = 0,1,2, .s
sC L d sω ω ω

π

∞

−∞
∫k k  (4)

They can be obtained from the asymptotic 
expansion of the (inverse) dielectric function 
obtained using the Kramers-Kronig relations. Notice 
that the loss function in the present setting is no 
longer an even function of the frequency.

Indeed, since the inverse longitudinal dielectric 
function ( )1 , =z iε ω δ− +k is a response function 
(it is analytical in the upper half-plane of the complex 
frequency, > 0,δ and possesses there a positive 
imaginary part), we have that
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Then, along any ray in the half-plane Im > 0z ,

( )1 , zε − →∞k 
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The value of the zero-order moment stems 
directly from (5):
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In the present work we employ for the dielectric 
function the following.

Quantum random-phase approximation for a 
magnetized Fermi fluid of charged particles

It was shown by Akhiezer, Eleonsky and others 
[7, 8] that the RPA longitudinal dielectric function 
has the following form 
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( ) ( )
2

RPA 2

4, = 1 , ,e
k
πε ω ω+ Πk k           (9)

where the polarization function should be calculated 
using, instead of free waves, the Landau functions 
[9]. As a result, the following expression is obtained 
[10, 11]:
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( )1 2= min ,µ ν ν and ( )Lαµ λ is the generalized 
Laguerre polynomial, while

( )
2 21, =

2 2c
pE p
m

ν ω ν + + 
 



            (13)

is the Landau energy level [9], and

( ) ( ){ } 1
, = 1 exp ,f p E pν β ν η

−
+ −   (14)

is, of course, the Fermi-Dirac distribution.
Notice that the dimensionless chemical potential 

η in the distribution (14) is to be determined from 
the normalization condition:
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The integral in (15) can be conveniently 
expressed in terms of the Fermi integral 
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To begin with, let us calculate the static dielectric 
function and the zero-order moment (8):
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Then, let us consider the asymptotic expansion of 
the polarization function (10),
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where we keep the imaginary part of the polarization 
function, 
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The moments
In order to find the moments (19), let us use the 

above definitions and let us study the asymptotic 
form of the auxiliary function 
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as z →∞ in the half-plane Im > 0z :
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easily expressed in terms of the Fermi integrals (16):
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Now we are in a position to calculate the 
moments 
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and the moments (19). Then we can follow the lines 
of [12].

The canonical solution approximation
As it was said in the Introduction, let us employ 

for the loss function (3) a simplified three-moment 
canonical solution [13]:
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It is important that the stopping power is 
proportional to the imaginary part of the polarization 
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operator, ( )M k , which depends exponentially on 

the frequency substituted by cosz ck w ϑ νω+ .
Hence, the frequencies jΩ can be determined 
explicitly as it is pointed out above.

The weights jm in (23) can be found from the 
moment conditions (4):

0 0

1 2 1 0 1
2 2
1 2 2 0 1 2

1 1 1
0 =
0

m C
m C
m C

     
     Ω Ω Ω     
     Ω Ω Ω Ω     

(24)

and, hence,

1
0 0

1 1 2 0 1
2 2

2 1 2 0 1 2

1

2

0

1

2

1 1 1
= 0 =

0

1

0 .

m C
m C
m C

C

−
     
     Ω Ω Ω     
     Ω Ω Ω Ω     

Ω − Ω 
=  

 Ω 
 Ω 

(25)

In this case, the main factor in the stopping power 
simplifies significantly:
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depends only on the orthogonal component of the 
wavevector. Thus, we reduce the calculation of the 
stopping power to the following relatively simple 
expression 
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which contains only one integral of the square of the 
(first kind) Bessel function of integer order ν and 
only two summations, one of which is a finite sum.

Conclusion

It is obvious that the present work is only a first 
step to the solution of the complicated problem of 
evaluation of the stopping power of collisional 
plasmas with significant correlational effects, both 
related to the Coulomb and exchange interactions. 
We have at least deduced the difficulty of the 
calculation of the stopping power to the level 
characteristic for the classical plasmas [2, 5]. The 

next step will consist in the employment of the non-
canonical solutions of the loss-function Hamburger 
moment problem [15-19], which is now 
straightforward since the lower-order moments are 
now calculated. This problem along with the 
determination of the slow- and fast-projectile [20-
23] and other asymptotic forms of the stopping power 
are beyond the scope of the present short publication.
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