Abstract. Accurate prediction of spacecraft placement is crucial for mission completion and scientific research. Based on the archive of the TLE data of the spacecraft, the placements of the Low Earth Orbit spacecraft (Al-Farabi-2), Medium Earth Orbit spacecraft (BEIDOU-3 M20), and High Earth Orbit spacecraft (IPM 2 & BREEZE-M R/B) were predicted in coordinate form using the first set of TLE data and SGP4/SDP4 model in Python. This work also employs the STK software for comparison purposes. The actual placements of these spacecraft are obtained by parsing their TLE data archives, and the errors of the two prediction methods are calculated. The errors are compared to evaluate the similarity and prediction accuracy of the two methods. This comprehensive analysis allows for an assessment of the feasibility of predicting spacecraft placements using a Python program as an alternative to the STK software. The results indicate that the Python-based method can be effectively used for accurate satellite coordinate prediction, offering a more accessible and cost-effective alternative to the STK software.

Key words: placement of spacecraft, placement prediction, TLE data, Celestial Mechanics, Al-Farabi-2 satellite.
boasts outstanding 3D graphics rendering capabilities, allowing users to visualize the positions or operational status of satellites, rockets, spacecraft, ground antennas, and even aircraft carriers. Its accurate built-in models and comprehensive data analysis templates allow users to obtain data and charts to analyze the information more intuitively. However, due to STK's high precision calculations and 3D graphics rendering, complex built-in models and sub-programs, and high acquisition and learning costs, STK is only famous among large tech companies, aerospace firms, defense industries, and renowned research institutes, and not widely used in public universities, college teachers and students, and amateur astronomers.

A literature review shows that it is possible to use programming languages to implement the corresponding tasks while avoiding the limitations of STK software. For example, Zhao Jian used Visual C++ and OpenGL to visualize satellite trajectories under the Windows system [8]; Xiaoheng Liang designed a cross-platform simulation software for efficient analysis and fast planning of multi-satellite Earth observation missions by C++ [9]. Therefore, this work also implements an alternative to STK software by using a programming language. With the rapid development of programming, increasingly specialized needs are being addressed. In recent years, as the specificities of demands across industries have grown, an increasing number of programming languages have emerged. Compared to the increasingly complex systems of software, programming languages are high-level languages similar to human languages, allowing users to complete specific tasks through designing, writing, running, and debugging programs [10]. Among the numerous programming languages, Python, C, Java, PHP, and others are the most widely used, with convenient system-building capabilities. Python, which supports adding third-party libraries such as SciPy and NumPy, is now widely used [11]. This work will analyze TLE data using Python and predict the placement of spacecraft.

This work will take LEO satellites (Al-Farabi-2, altitude is 577km), MEO satellites (BEIDOU-3 M20 altitude is 21571km), and HEO satellites (IPM 2 & BREEZE-M R/B altitude is 37609km) as examples. First, the TLE data set of satellites from Jan 01, 2023, to Jan 31, 2023, will be obtained. The first TLE data of each satellite will be parsed, and the placement of the satellite will be predicted through Python and STK. Then, all TLE data will be parsed, and the placement information of the satellite in all TLE data will be obtained as a reference for error calculation. Both prediction methods will be evaluated, and the actual significance of the program design method in satellite placement prediction will be obtained compared to the STK software.

Mathematical model

In celestial mechanics, the orbital elements, commonly known as the orbital six elements, are used to describe the position and state of the target celestial body relative to the central celestial body [12, 13]. This theory is widely used in the field of aeronautical and astronomical research. There are:

- a – Semi-major axis or specific angular momentum h
- e – Eccentricity
- i – Inclination
- ω – Argument of Perigee
- Ω – RAAN, Right ascension of ascending node
- M – Mean anomaly or θ – true anomaly

(They can be converted through the eccentric anomaly E, where: $\cos \theta = \frac{\cos E - e}{1 - e \cos E}$, $M = E - e \cdot \sin E$)

These parameters describe the spacecraft's position and motion direction in its orbit, as well as the size, shape, and orientation of the orbit. Based on this theory, the placement and velocity of a satellite can be calculated. The orbital six elements of a satellite can be obtained by parsing TLE data.

The initial orbital elements $(a_0, e_0, I_0, \Omega_0, \omega_0, M_0)$ and the orbital elements at any time of the spacecraft are given $(a, e, I, \Omega, \omega, M)$.

In ideal conditions, a spacecraft moves in a two-body motion, but the predictions of this ideal state have significant errors due to the perturbation forces in the motion environment. Under the influence of these perturbations, the motion trajectory and velocity of the satellite do not follow the two-body motion model [14]. The eccentricity e, inclination i, right ascension of the ascending node Ω, and orbital period T of the satellite's orbit are constantly changing.

As shown in Figure 1, the perturbation forces experienced by the spacecraft can be represented:
Development of a program for the prediction of placement of spacecraft based on TLE data

The above perturbation forces need to be substituted into the motion equations. The two-body motion equation can be represented as Equation (1):

\[\ddot{r} = -\frac{\mu}{r^3} \hat{r} + \ddot{r}_p \]

(1)

\(\ddot{r}_p \) represents the sum of all the perturbation forces:

\[\ddot{r}_p = \ddot{r}_{Earth} + \ddot{r}_{Sun} + \ddot{r}_{Moon} + \ddot{r}_{Tidal} + \]
\[+ \ddot{r}_{Atmospheric} + \ddot{r}_{ERadiation} + \ddot{r}_{SRadiation} \]

(2)

where,

- \(\ddot{r}_{Earth} \) – Non-spherical and non-homogeneous Earth Perturbation
- \(\ddot{r}_{Sun} \) – Solar Gravitational Perturbation
- \(\ddot{r}_{Moon} \) – Lunar Gravitational Perturbation
- \(\ddot{r}_{Tidal} \) – Tidal Friction
- \(\ddot{r}_{Atmospheric} \) – Atmospheric Perturbation Forces
- \(\ddot{r}_{ERadiation} \) – Earth Reflect Radiation Pressure
- \(\ddot{r}_{SRadiation} \) – Sun Radiation Pressure

The perturbation forces are closely related to factors such as orbital height and orbital period. Earth’s non-spherical gravitational force is the largest source of positional offset, and atmospheric drag significantly decreases with increasing orbital height [15]. Solar radiation pressure has a robust periodic nature and is broadly consistent with the orbital period of the spacecraft [16]. Here, the perturbation force due to Earth’s non-spherical gravitational force \(J_2 \) is chosen as the basis for mathematical derivation.

Based on period T, spacecraft can be divided into two categories: LEO spacecraft with T < 225 minutes and deep space spacecraft with T > 225 minutes. For the placement prediction of LEO spacecraft, the SGP4 model should be used [17]. The SDP4 model considers both the solar and lunar gravitational influence, so it is more appropriate for deep space spacecraft.

The mathematical derivation of SGP4 is based on the following principles [18]:

1. Kepler’s laws of planetary motion, which are the three laws of planetary motion.
2. Atmospheric perturbation (static, non-rotating spherically symmetric atmosphere); fourth-order potential harmonics (determined by the Earth’s flat rate uptake \(J_2, J_3, \) and \(J_4 \)); spin-orbit resonances in synchronous and semi-synchronous orbits; solar and lunar gravitational perturbation effects; and
approximate gravitational field models: SGP4 uses a simplified model of the Earth's gravitational field to simplify calculations.

3. Orbit simplification for small bodies: The SGP4 model assumes the orbit of spacecraft motion is stable, which simplifies the model.

The gravitational acceleration of a spacecraft from a non-spherical planet can be given by [19]:

\[\ddot{\mathbf{r}} = -\frac{\mu}{r^3} \mathbf{u}_r + \mathbf{r}_p \]

(3)

The first component of the right-hand side is dependent on the spherical planet; during the second term \(\mathbf{r}_p \) means the perturbation acceleration due to the non-spherical planet.

Where perturbation acceleration can be expressed in the following formula:

\[\mathbf{r}_p = p_r \mathbf{u}_r + p_\perp \mathbf{u}_\perp + p_h \mathbf{h} \]

(4)

And \(\mathbf{u}_r \) is the radial unit vector of the spacecraft, pointing to the radial position.

\(\mathbf{u}_\perp \) is the transverse spacecraft unit vector perpendicular to the radial vector.

\(\mathbf{h} \) is the normal unit vector of the spacecraft, pointing to the spacecraft's motion direction.

\[p_r = -\frac{3\mu J_2 R^2}{2r^4} \left[-3 \sin^2\theta \sin^2(\omega + \theta) + 1 \right] \]

(5)

\[p_\perp = -\frac{3\mu J_2 R^2}{2r^4} \sin \theta \sin(2\omega + 2\theta) \]

(6)

\[p_h = -\frac{3\mu J_2 R^2}{2r^4} \sin 2\theta \sin(\omega + \theta) \]

(7)

These relations are derived by Prussing and Conway [14], who also shows how \(p_r \), \(p_\perp \) and \(p_h \) induce time rates of change in all of the orbital parameters.

The model calculates the position and velocity of a satellite in Earth-centered inertial (ECI) coordinates. You can refer to the following formulas and the reference for the SGP4/SDP4 model [3]:

SGP4 model for near-Earth satellites (period less than 225 minutes):

\[\mathbf{r}_{ECLI} = f(TLE, t, SGP4) \]

(8)

SDP4 model for deep-space satellites (period greater than 225 minutes):

\[\mathbf{r}_{ECLI} = f(TLE, t, SDP4) \]

(9)
where r_{ECI} represents the position vector of the satellite in Earth-centered inertial coordinates, TLE is the Two-Line Element data, t is the time of interest, and SGP4/SDP4 are the specific perturbation models used for calculation.

After obtaining the ECI coordinates using the SGP4/SDP4 model, we need to convert them to Earth-centered Earth-fixed (ECEF) coordinates for practical use. This can be done using the following formula [20]:

$$ r_{ECEF} = R_z(-GMST) \ast r_{ECI} \quad (10) $$

where r_{ECEF} is the position vector in ECEF coordinates, R_z is the rotation matrix about the z-axis, and $GMST$ is the Greenwich Mean Sidereal Time.

For easier interpretation and usage, the ECEF coordinates can be converted to latitude, longitude, and altitude (LLA) using the following formulas [20]:

$$ \phi = \tan^{-1} \left(z, \sqrt{x^2 + y^2} \right) \quad (11) $$
$$ \lambda = \tan^{-1} (y, x) \quad (12) $$
$$ h = \sqrt{x^2 + y^2 + z^2} - R_e \quad (13) $$

where ϕ is the latitude, λ is the longitude, h is the altitude, and R_e is the Earth's radius.

Based on the above mathematical model, combined with the description given on the website and the GitHub blog [21], the program was designed and written on the Python platform, and this program was named Placement_Prediction.py. The pseudocode of the Placement_Prediction.py program is given in Figure 3.

![Figure 3 – Pseudocode of Placement_Prediction.py](image)

Experimental process of placement prediction

To evaluate the accuracy of the SGP4/SDP4 model in predicting the positions of satellites with different orbital altitudes, in this work, satellites with eccentricities less than 0.1 ($e < 0.1$) and nearly circular orbits have been selected. Three different types of satellite orbits are considered, based on their altitude: Low Earth Orbit (LEO) with an altitude of less than 2000 km, Medium Earth Orbit (MEO) with an altitude between 2000 km and 35786 km, and High Earth Orbit (HEO) with an altitude higher than 35786 km [22]. The archive of TLE data for these three satellites over a period of one month was obtained from the website [23]. The first set of data was used as the initial data. The obtained TLE was transformed into orbital elements, and the geocentric coordinates of the satellite were calculated through the mathematical programming model, predicting the satellite coordinates for approximately one month. Then, the initial TLE data was directly used as input into the STK software to predict the satellite coordinates for one month. The process is illustrated in Figure 3.

Int. j. math. phys. (Online)
International Journal of Mathematics and Physics 14, №1 (2023)
The errors were calculated by comparing two sets of coordinates \((x_A, y_A, z_A)\) and \((x_B, y_B, z_B)\), which respectively represent the actual and predicted coordinates:

\[
\Delta l = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2 + (z_A - z_B)^2} \quad (14)
\]

And the accuracy of the prediction:

\[
\%A = 100 - \frac{\Delta l}{\sqrt{x_A^2 + y_A^2 + z_A^2}} \quad (15)
\]

Since Placement_Prediction.py was designed and written for TLE data parsing and spacecraft position prediction, the step size of spacecraft coordinate prediction can be changed arbitrarily according to the requirements, however, Placement_Prediction.py did not have the function of fitting the data, so the actual coordinates of the spacecraft at any given moment could not be inverted from a set of TLE data.

We assumed that the one-day TLE data of Jan 06, 2023, for satellite Al-Farabi-2 was acquired (as shown in Table 1), and there were three sets of TLE data for that day as follows:

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023 Jan 06 04:09:31.3307</td>
<td>(1765.899, 6717.656, -3.948)</td>
</tr>
<tr>
<td>2023 Jan 06 15:22:18.2496</td>
<td>(1712.559, 6731.741, -3.188)</td>
</tr>
<tr>
<td>2023 Jan 06 21:46:44.8896</td>
<td>(1682.110, 6739.717, -2.433)</td>
</tr>
</tbody>
</table>

After parsing by the Placement_Prediction.py program, the epochs and actual coordinates of the three sets of TLE data were found to be:

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023 Jan 06 04:09:31.3307</td>
<td>(1765.899, 6717.656, -3.948)</td>
</tr>
<tr>
<td>2023 Jan 06 15:22:18.2496</td>
<td>(1712.559, 6731.741, -3.188)</td>
</tr>
<tr>
<td>2023 Jan 06 21:46:44.8896</td>
<td>(1682.110, 6739.717, -2.433)</td>
</tr>
</tbody>
</table>

Table 1 – TLE data of Jan 06, 2023

Table 2 – Epochs and actual coordinates of TLE data of Jan 06, 2023
After obtaining the epoch, the time Jan 06 04:09:31.3307 was provided as input to the Placement_Prediction.py prediction program, which gave the following predicted coordinates for the remaining moments Jan 06 15:22:18.2496 and Jan 06 21:46:44.8896.

Table 3 – Epochs and prediction of coordinates of TLE data of Jan 06, 2023

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023 Jan 06 04:09:31.3307</td>
<td>(1765.899, 6717.656, -3.948)</td>
</tr>
<tr>
<td>2023 Jan 06 15:22:18.2496</td>
<td>(1711.813, 6731.857, -9.574)</td>
</tr>
<tr>
<td>2023 Jan 06 21:46:44.8896</td>
<td>(1681.075, 6739.726, -10.825)</td>
</tr>
</tbody>
</table>

Based on the above coordinates data, Placement_Prediction.py could calculate the coordinates errors. This prediction method was efficient with a short calculation time (less than one second), which was very suitable for real-time solving.

As the following figure shows, the software STK could give a 3D model with three sets of TLE data and the trajectory.

As shown above, the STK program could give satellite coordinates for any moment of the day and also predict satellite coordinates based on time intervals. It is not difficult to understand that the built-in algorithm of STK software supports all the functions of the Placement_Prediction.py program, but the aim to complete the prediction of coordinates could be fully realized by the Placement_Prediction.py program.

Taking the satellite Al-Farabi-2 (altitude is 577km) as an example for LEO satellite placement prediction, prediction started on Jan 06 at 04:06:08. The errors of the two prediction methods are shown in Figure 6 and Figure 7.

Figure 5 – STK program for placement prediction
According to the Excel table from the output to obtain the above graph in the overall trend, the predicted results for satellite Al-Farabi-2, Placement_Prediction.py, and STK software gave the same upward trend. At the prediction end time of Jan 30, 2023, the predicted spatial point errors are approximated at 1000km. The prediction results of Placement_Prediction.py show a sudden upward trend from the 21st to the 27th; the excessive prediction errors bigger than 200km make such a sudden upward trend of no research value.

From the data, it appears that Placement_Prediction.py's predictions started to have an error bigger than 10km after Jan 08, while the STK predictions did the same. Therefore, Placement_Prediction.py has the same reference value as STK for LEO predictions over a three-day period, and Placement_Prediction.py can be used as an alternative program to STK.

For comparison in accuracy, the prediction error by Placement_Prediction.py's program achieved 3.09 km on Jan 07 at 10:32:17, and the accuracy was 99.99955% according to Equation (9); the error of STK prediction was 3.167 km, and the accuracy was 99.99954%.

Taking the satellite BEIDOU-3 M20 (altitude is 21571km) as an example for MEO satellite prediction, prediction from Jan 01 at 10:48:16, the errors of the two prediction methods are shown in Figure 8 and Figure 9.

In the prediction of MEO satellites from Jan 01 at 10:48:16, Placement_Prediction.py did not have as much data density as STK, so its prediction results did not fluctuate like a wavy line. However, the maximum prediction error of Placement_Prediction.py for 30 days did not exceed 6 km, which is less than half of the maximum value of STK, so the prediction of Placement_Prediction.py is practically useful. In particular, its prediction errors did not exceed 1km in 3 days, which is more accurate than STK's prediction.
For comparison in accuracy, the prediction error by Placement_Prediction.py's program reached 0.133 km on Jan 02 at 11:51:42, which was calculated according to Equation (9) to obtain an accuracy of 100%; the error of STK prediction was 0.124 km with an accuracy of 100%.

Taking the satellite IPM 2 & BREEZE-M R/B (altitude is 37609km) as an example for HEO satellite placement prediction, from Jan 01 at 03:34:00, the errors of the two prediction methods are shown in Figure 10 and Figure 11.
For the prediction of the HEO, it is evident that the errors obtained by the two prediction methods have the same trend. As in the case of the MEO prediction, the errors given by the Placement_Prediction.py program were also smaller than the prediction errors of the STK software. Within 24 hours, the accuracy of both prediction methods reached 100%. The prediction errors were less than 1 km in 3 days and even less than 100 m in 24h by Placement_Prediction.py, which is highly informative.

Analysis

The overall trend of prediction errors given by Placement_Prediction.py and STK software are very similar in predicting the positions of the three orbiting satellites, with Placement_Prediction.py being significantly smaller and more accurate in predicting the extreme values of errors. The results of both prediction methods are more accurate over a three-day period, especially within 24 hours; the accuracy of the prediction is not less than 99.99%. The errors of both prediction methods are high because satellites in LEO are affected by more regenerative forces. Placement_Prediction.py shows higher superiority in predicting satellite positions in medium and high Earth orbits, with the whole program running in less than 1 second. At the same time, the STK software spends much time in modeling processing.

Conclusion

The errors in position prediction are mainly composed of two parts: the model errors of the prediction algorithm and the errors in the value of orbital parameters caused by the measurement errors, that is, the errors in the obtained TLE data itself [24]. The model error can be analyzed theoretically, and more accurate physical and mechanical models are needed to solve the solution. With the current theoretical and mathematical models, the method used in this work is highly accurate. As a well-developed commercial software, the STK software has a comprehensive algorithm, and the predicted results can be effectively tested for compliance. The final actual accuracy is the result of combining various errors, and the primary purpose of this work is to evaluate the final forecast accuracy.

After inputting the initial TLE data in the program Placement_Prediction.py, the obtained coordinate prediction results have low errors compared with those obtained in STK using the model SGP4 for LEO spacecraft and the model SDP4 for deep-space spacecraft, especially when the spacecraft does not make any orbital maneuvers, and the prediction results of both achieve nearly the same results. The prediction results were compared with the actual data, and their prediction errors were satisfactory, especially the realistic prediction results of Placement_Prediction.py, whose prediction errors were less than one hundred meters in 24h. Moreover, in practical applications, TLE data can be refreshed regularly [25], so it is essential to predict with high accuracy within 24 hours.

STK software is quite powerful but requires a specific computer configuration to guarantee computing capabilities. Otherwise, it will affect the computation or even flash and crash. Programming, in contrast, allows us to do as we need and does not have high requirements for computer hardware. Therefore, using programming to achieve accurate satellite coordinates prediction through TLE data can be widely used as an alternative to the STK software.
Acknowledgment

This research was funded by grant number AP09260469 Development of a control system able to keep the required configuration of spacecraft formation for the performed mission purposes, taking into account the uncertainties caused by external disturbances.

References