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Abstract. In this article the calculation and analysis of the plasma microfield distribution function of non-
ideal dense plasma are presented. Plasma particles interact via the effective potential which takes into 
account of the quantum effect of diffraction and the screening effect. Method of Iglesias was used for 
calculation of the microfield distribution function of the ionic component. The advantage of this method 
is that the distribution function is exactly expressed in terms of a two-body function and does not require 
knowledge of many-body functions, this fact significantly simplifies the problem. Results were compared 
with the results obtained on the basis of other models. The discussion and conclusion are presented.   
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Іntroduction 
 

In a real plasma processes are continuously 
occurring which affects plasma properties  and its 
composition. These are ionization, dissociation 
processes, excitation of bound electrons in atoms 
[1]. In turn, plasma environment very strongly 
affects the processes occurring in it. The fact is 
that in a sufficiently small volume of plasma V < 

3

sl , where sl  is a characteristic screening radius, at 
distances r < sl distribution of charged particles in 
the system is not homogeneous. Therefore, 
although the plasma is electrically neutral as a 
whole, at sufficiently small distances an electric 
field shows its action, which greatly affects many 
plasma properties (the kinetic coefficients and 
thermodynamic properties, radiation, etc.) [2]. 

The internal microscopic field exerts a strong 
effect on the spectral lines shape, causing the 
phenomenon of Stark broadening, which attracts 
much attention because of the wide practical 
application. 
 
Microfield distribution function in strongly 
coupled plasmas 
 

It should be noted that the microfield is 
variable for a given density of charged particles 
due to density fluctuations. The motion of charged 
particles perturbing atom leads to the distribution 
of the microfield in a plasma. The main 
characteristic of the internal plasma microfield is 
its distribution function, which determines the 

probability of finding an electric field at a point 
located at 0r


.  

The microfield distribution was first 
calculated by Holtsmark [3], who neglected 
correlation phenomena, so that subsequent 
research focused on taking into account 
correlations between the particles. Holtsmark’s 
results are valid for high-density plasma.  

Ecker and Muller [4] were the first to include 
correlations for the low-frequency ionic 
components of the electric field. The authors used 
a model of uncorrelated distribution of screened 
ions. According to this approximation, the 
effective fields are defined by the expression 
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In the early '80s Morita noticed that the 

problem of microfield distribution is formally 
similar to the problem of determining chemical 
potential. This allowed Iglesias [5] to reduce the 
microfield problem to finding the radial 
distribution functions (RDF) of some fictitious 
system with complex potential energy of 
interaction. This made a basis for development of 
the integral equations method to study the 
problem of plasma microfield distribution.  

In this paper we use a method for calculating 
the distribution function of the ionic microfield 
component P(E) proposed by Iglesias [6]. The 
advantage of this method is that the distribution 
function is exactly expressed in terms of  
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a two-body function and does not require 
knowledge of many-body functions. We consider 
OCP model, i.e. a fully ionized plasma, in which 
electron component forms a homogeneous 
neutralizing background with N positively 
charged particles. The microfield distribution 

)(EW


 is defined as the probability of finding an 
electric field E


 at a singly charged point located 

at 0r


. It’s generally expressed in terms of the 
probability density ),...,,( 101 NN rrrP


 of finding a 

particular configuration of 1N particles: 
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where iE


– is the electric field, creating by i-th 

particle at 0r


 of radiating particle.  

Assuming that our system is isotropic we may 
rewrite Eq. (2) as: 
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The main result obtained in [6], is an equation 
that relates the Fourier transform of the microfield 
distribution function T(l) with a total pair 
correlation function );( rh


.  
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where l is a unit vector in the direction of l


,  is 

a magnitude of the vector l


, q is a charge of ions, 
immersed in a neutralizing electron background. 
The next step is a definition of );( rh


. The 

simplest approximation suitable for a Coulomb 
system is the Debye-Hückel theory. In this 
approximation we have 
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In [7] with the help of linear response method 

an effective potential was obtained which is used 
in this paper. It takes into account both the 

diffraction effects at short distances and also 
screening field effects at large distance. 

 

                                   














r

e

r

e

r

eZ
r

ArBr

De

e
22

2

/41
)(







,                                         (6) 

 
where  
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The coupling parameter is  
 

 2

0/e r  , 

 

the Debye length is  
1/ 2

24Dr ne  ,  
1

Bk T


 , average interparticle distance 0r , and 
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Instead of )(r


  in Eq. (5) we used the reduced form of pseudopotential (6): 
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where    
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In order to solve Eq. (3) numerically it’s better to use the dimensionless parameter: 
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and to introduce lEl 0 . Thus we obtain formula to calculate the distribution of electric field E
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Substitution of Eq. (5) into Eq. (4) yields 
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Figure 1 – A comparison of )/( 0EEP curves for Γ = 0,5. Solid line - the distribution of Holtsmark; dash-dotted line - 

the results obtained in this work; dashed line - the results of Iglesias; dashed line - distribution obtained on the basis  
of Deutsch potential. 
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The one-dimensional integration over R and 
the sine transform in Eq.(3), in which T(l) is 
defined by (4), were done numerically. The results 
are presented in Figs. 1 and 2. 

In Fig. 1 we have a )/( 0EEP plot for the  

value of Γ=0,5, where we compare our results 

with the those of Holtsmark [3] and Iglesias [6]. 
It also shows the distribution of microfield, 
obtained on the basis of Deutsch potential,  
taking into account the effects of diffraction  
of particles. 
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Figure 2 – A comparison of )/( 0EEP curves for Γ = 0,1 and  Γ = 0,3. Solid line - the distribution of Holtsmark; 

dashed line - distribution obtained on the basis of Deutsch potential (Γ = 0,1); dashed line - distribution obtained on the 
basis of Deutsch potential (Γ = 0,3); dash-dotted line - the results obtained on the basis of effective potential (Γ = 0,1); 

bar with a double dotted line - the results obtained on the basis of the effective potential (Γ = 0,3). 
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