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Abstract. In this paper, nonlinear vibrations of an infinite thin cylindrical shell as a limiting case of a 
nanotube are studied. The main relations of Sanders-Koiter’s nonlinear shell theory and the Hamilton 
variation principle are applied to obtain a nonlinear mathematical model of the shell vibrations and allow 
fully accounting for the influence of nonlinear effects. Using the method of multiple scales with 
specification of fast and slow times, high-order asymptotic relations taking into account quadratic and cubic 
nonlinearities are found. Based on the solution of the asymptotic scheme at fourth order and application of 
the inextensibility condition for the semi-membrane shell theory, the numerical analysis of tangential and 
radial displacements of the cylindrical shell at leading order relative to the Fourier coefficients is conducted. 
The impact of the wave number, polar angle, radius, and wall thickness of the shell on the amplitude and 
period of the arising vibrations is investigated. Numerical illustrations of the obtained solutions are 
presented for several cases. 
Key words: mathematical model, nonlinearity, cylindrical shell, vibration, asymptotic. 

 
 
Introduction 
 
Theoretical studies of various phenomena at 

nanoscale are an important step for experimental and 
technological progress in this direction. They allow 
not only deepening our knowledge of the 
fundamental principles underlying nano-objects, but 
also can be the ground for creating new and 
improving existing materials and structures with 
properties not available at the macrolevel [1]. 

When studying cylindrical-shaped nano-objects 
with large length, one can neglect the conditions at 
their ends since the nature of wave formation upon 
loss of stability and, thus, the shape of the 
approximating deflection functions practically do not 
depend on the boundary conditions. Then it is 
expedient to model such nano-objects in the form of 
an infinite thin circular cylindrical shell, the limiting 
case of which is a thin circular ring. The history of 
this question was deeply reviewed in the works of 
Evensen [2, 3]. In particular, Evensen theoretically 
and experimentally showed the importance of 
accounting for the ring strain caused by nonlinearity. 

Absence of this factor resulted in incorrect results 
even at the qualitative level. 

Research of low-frequency vibration modes 
specific for thin shells, in particular carbon nano-
objects, based on the nonlinear theories of cylindrical 
shells was conducted in a number of works, see e.g. 
[1, 4]. It was noted that the derivation of nonlinear 
equations for low-frequency vibrations of carbon 
nanotube and the analysis of their bifurcation states 
were useful for understanding the process of energy 
exchange in nanotubes and the transition between 
different vibration modes. Comparison of the natural 
frequencies of carbon nanotubes, obtained on the 
basis of the beam and shell models, is presented in 
[5]. A linear asymptotic theory valid in the vicinity of 
the lowest cut-off frequency for a circular cylindrical 
shell was derived by Kaplunov et al. [6]. A high-order 
asymptotic scheme resulting in a system of nonlinear 
equations, which takes into consideration both cubic 
and quadratic nonlinearity, and allowing determining 
a nonlinear correction to the lowest cut-off 
frequencies of a thin cylindrical shell was obtained in 
[7]. 
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In many works, the authors introduce special 
physical hypotheses to obtain the models of nonlinear 
vibrations of single-walled carbon nanotubes. 
Amongst recent publications in this research field, 
one can highlight the works [8, 9], in which the 
resonant interaction of normal vibration modes of 
single-walled nanotubes was investigated. The 
authors utilized the semi-inverse asymptotic method 
and carried out the comparison of analytical and 
numerical models to estimate the nonlinear 
phenomenon of energy localization. In the work [10], 
free and forced nonlinear vibrations of the isotropic 
piezoelectric/viscoelastic Euler-Bernoulli nano-
beam were studied using the consistent couple stress 
theory. The frequency response of the nano-beam for 
different damping and size-effect coefficients and 
various values of forcing function amplitude was 
analyzed. 

Despite the breadth of research carried out for 
development of mathematical models of such 
structures, a large class of dynamic problems of 
cylindrical nano-objects taking into account 
nonlinear factors is still poorly investigated. One of 
the effective ways to solve the problems of the nano-
object dynamics is the use of asymptotic theories and 
methods. They allow conducting a preliminary 
analysis of the studied problem, discard "small 
terms" and introduce new slowly varying variables 
that can be accurately calculated [11]. Asymptotic 
methods also provide excellent results in the field of 
extreme parameters. 

In this paper, the results of [7] are extended by 
conducting the numerical analysis of circumferential 
(tangential) and radial displacements of an infinite 
cylindrical shell at leading order of asymptotic 
expansion, the coefficients of which are determined 
through the fourth-order asymptotic scheme 
including five angular modes. 

 
Nonlinear Mathematical Model 
 
Let us consider a weakly nonlinear setup for 

vibrations of an infinite thin circular cylindrical shell 
with thickness h, the transverse cross-section of 
which is illustrated in Fig. 1. Define dimensionless 

time 0t t  with scaling  2 2
0 1t R E ν  

as in [7]. Here   is the mass density, R is the shell 
mid-surface radius, ν  is Poisson’s ratio, and E is 
Young’s modulus. 

 

 
Figure 1 – Cross-section of an infinite 

 circular cylindrical shell 
 
It is known that the problem of shell vibrations in 

the general case is characterized by an infinite 
number of natural frequencies, with each frequency 
corresponding to a certain vibration mode. When 
studying natural linear vibrations, the displacement 
amplitudes of the system do not depend on the 
frequency and are conditioned only by the initial 
conditions. The presence of nonlinearity in a 
dynamical system, when the time and spatial 
coordinates are independent variables, significantly 
complicates the solution of the problem. In this case, 
the shell is considered as a system with a finite 
number of degrees of freedom, and its curved surface 
is approximated in a certain manner [12]. 

Circumferential and radial mid-surface 
displacements v and w of the shell are 
nondimensionalized by means of the radius R: 
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According to the Sanders-Koiter nonlinear shell 

theory [13], dimensionless mid-surface strain-
displacement relations and changes in the curvature 
of the infinite thin-elastic circular cylindrical shell 
with no initial imperfections are written as 
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where   is polar angle. Hereinafter we omit the hat 
for the dimensionless displacements v and w. 
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Then, applying the Hamilton variation principle, 
we arrive at the following nonlinear partial 
differential equations, which describe the vibrations  
 

 

of an infinite thin circular cylindrical shell taking into 
account a weak nonlinearity (see [6, 7] for  
details): 
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where   is a small parameter corresponding to the 
relative thickness of the shell. 

In accordance with the method of multiple scales 
[14], both fast 0  and slow 1  times are specified: 

 
 3

0 1,      .                 (5) 
 
Expanding the displacements v and w into 

asymptotic series in terms of the small parameter  
 , the following set of equations at leading order is 
obtained: 
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The displacements 0v  and 0w  in Eqs. (6) are 

given by the expressions with the Fourier coefficients 
V0 and W0: 

 
0 0 0 1 0 0 0 1( , )sin , ( , ) cos ,v V n w W n        (7) 

 
where n is the circumferential wave number. 

On substituting relations (7) into Eqs. (6), we 
have the following inextensibility condition of the 
semi-membrane shell theory: 

 
 

 0 0 0.W nV                              (8) 
 
This theory is widely utilized in the analysis of 

long closed and open cylindrical shells, when the 
membrane theory is not applicable, for example, 
while analyzing the stress state of shells. 

Following the asymptotic procedure, nonlinear 
equations of the shell vibrations taking into account 
quadratic and cubic nonlinearities at first, second, 
third, and fourth asymptotic orders are obtained (see 
[7] for more details). Solving the asymptotic scheme 
at fourth order, we arrive at the expression for the 
leading order term W0: 
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where 1nD  and 2nD  are arbitrary constants, 0n  

and 1n  are eigenfrequencies and their linear 
correction, respectively, determined by 
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and
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Numerical Results and Discussion 
 
This section is concerned with the numerical 

analysis of the infinite cylindrical shell vibrations 
with nonlinearity based on the relations presented in 
the previous sections and further visualization of 
elastic displacements of the shell as a limiting case of 
a nanotube. 

The values for the radius and wall thickness of 
the cylindrical shell were chosen in accordance with 
the work [15]: 95 10 m,R    90.066 10 mh   .  
 

Numerical calculation and graphic visualization of 
displacements of the cylindrical shell were performed 
in the Wolfram Mathematica package. 

Figures 2 and 3 show the graphs of the cylindrical 
shell displacements at leading order relative to the 
Fourier coefficients V0 and W0, and Fig. 4 illustrates 
the displacements 0v  and 0w  given by expressions 
(7) for circumferential wave number 2n   and 
constants 1 0.5nD  , 2 1nD  . The value for the 

polar angle  is 
6


. 

 

  
Figure 2 – Radial displacements W0  

of the circular cylindrical shell 
Figure 3 – Tangential displacements V0  

of the circular cylindrical shell 
 
 

 
Figure 4 – Tangential and radial displacements  
of the cylindrical shell at leading order, 2n   

 
 
As can be seen from the obtained graphs, for the 

wave number 2n  , the maximum amplitude values 
of the shell tangential displacements 0v  slightly 
exceed the largest amplitudes of its radial 

displacements 0w . The oscillatory process of the 
circular cylindrical shell remains stable. 

The results of numerical simulation when the 
value of the wave number increases are presented in 
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Figs. 5-10. As the constructed graphs show, an 
increase in the wave number from 2n   to  

8n   results in a significant decrease in the period 
of the arising vibrations of the cylindrical  
shell. 

The displacement field of the cylindrical shell 
depending on the change in the polar angle   at 
different time moments is also studied (Figs. 11-13). 
The value for the circumferential wave number is 
chosen to be 2n  .

 
 

  
Figure 5 – Tangential and radial displacements 

 of the shell, 3n   
Figure 6 – Tangential and radial displacements  

of the shell, 4n   
 

  
Figure 7 – Tangential and radial displacements 

 of the shell, 5n   
Figure 8 – Tangential and radial displacements  

of the shell, 6n   
 

  
Figure 9 – Tangential and radial displacements  

of the shell, 7n   
Figure 10 – Tangential and radial displacements  

of the shell, 8n   
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For 3n  , there is a sharp decrease in the 
amplitude of the shell radial displacements 0w
compared to its tangential displacements 0v  for 
considered values of the system parameters (Fig. 
5), while for the values of the circumferential 
wave number 4,8n  , the amplitude of the shell 
radial displacements predictably exceeds the 

amplitude of its tangential displacements (Figs. 6-
10), which directly follows from the basic 
hypothesis of the semi-membrane shell theory (8). 
It is also worth noting that the maximum 
amplitude values of the tangential displacements 
and the minimum amplitude values of the radial 
displacements of the cylindrical shell are 
observed at 6n  . 

 
 

  
Figure 11 – Dependence of the shell tangential and 

radial displacements on the change in the polar angle  
  at the time moment 100   

Figure 12 – Dependence of the shell tangential  
and radial displacements on the change in the polar angle 

  at the time moment 500   
 

 
Figure 13 – Dependence of the shell tangential and radial displacements  

on the change in the polar angle   at the time moment 1000   
 
 
As follows from Figs. 11-13, the amplitude of the 

radial displacements 0w  is approximately two times 
higher than that of tangential displacements 0v  
throughout the entire oscillatory process when the 
polar angle changes. 

The influence of the mid-surface radius of the 
thin circular cylindrical shell as a limiting case of a 
nanotube on its tangential and radial displacements at 

leading order of the asymptotic expansion (6) is 
shown in Figs. 14 and 15, respectively, for the values 

of the wave number 2n   and polar angle 
6
  . 

Figures 16 and 17 demonstrate the results of 
numerical simulation for displacements of the infinite 
thin cylindrical shell when the wall thickness 
changes. 
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Figure 14 – The influence of the shell radius  

on its tangential displacements 
Figure 15 – The influence of the shell radius  

on its radial displacements 
 

  
Figure 16 – The influence of the shell thickness  

on its tangential displacements 
Figure 17 – The influence of the shell thickness  

on its radial displacements 
 
 
The conducted analysis shows that the decrease 

of the shell radius (two and four times decrease in 
Figs. 14 and 15, respectively) does not affect the 
amplitude of the arising vibrations at nanoscale; 
however, a significant decrease in the period of the 
cylindrical shell vibrations is observed. 

It follows from Figs. 16 and 17 that the twofold 
decrease and the corresponding increase of the shell 
wall thickness results only in the change of the period 
of the arising vibrations at leading order of 
asymptotic expansion; at the same time, there are no 
quantitative changes in their vibration amplitude. 

 
Conclusion 
 
The numerical analysis and visualization of 

tangential and radial displacements of an infinite 
circular cylindrical shell as a limiting case of a 
nanotube at leading order of asymptotic expansion, 
which allows giving a sufficiently accurate 
quantitative estimate of the oscillatory process, were 
carried out. A nonlinear mathematical model of 
vibrations of the cylindrical shell developed with the 

use of the fundamentals of Sanders-Koiter’s 
nonlinear theory and the application of the Hamilton 
variation principle underlay the obtained asymptotic 
relations. The utilization of a fourth-order asymptotic 
scheme allowed determining the leading-order 
Fourier coefficients, which were further used for the 
numerical analysis of the thin shell vibrations.  

The influence of the wave number, polar angle, 
radius, and wall thickness of the shell on the 
amplitude and period of the arising vibrations was 
studied. The conducted analysis showed that the 
change in the shell radius and the wall thickness did 
not affect the amplitude of the shell vibrations at 
nanoscale; however, a significant decrease in the 
period of the cylindrical shell vibrations was 
observed. 
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