
 

 
 
 
 
 
 

 
 
UDC 539.1 

 

Hernando Quevedo 1,2 , Saken Toktarbay 3  and Aimuratov Yerlan 3  
1
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, México,  

DF 04510, Mexico 
2

Dipartimento di Fisica and ICRA, Università di Roma “La Sapienza”, I-00185 Roma, Italy 
3  Physical-Technical Department, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan 

 
Quadrupolar gravitational fields described by the qmetric 

 
 

Abstract. We investigate the Zipoy-Voorhees metric ( q metric) as the simplest static, axially 

symmetric solution of Einstein’s vacuum field equations that possesses as independent parameters the 
mass and the quadrupole moment. In accordance with the black holes uniqueness theorems, the presence 
of the quadrupole completely changes the geometric properties of the corresponding spacetime that turns 
out to contain naked singularities for all possible values of the quadrupole parameter. The naked 
singularities, however, can be covered by interior solutions that correspond to perfect fluid sources with 
no specific equations of state. We conclude that the q metric can be used to describe the entire 

spacetime generated by static deformed compact objects. 
Keywords: 04.20.Jb;95.30.Sf Quadrupole moment, naked singularities, q-metric. 

 
 
Introduction 

 
The Zipoy–Voorhees metric [1, 2] was 

discovered more than forty years ago as a 
particular exact solution of Einstein’s vacuum field 

equations that belongs to the Weyl class [3] of 
vacuum solutions. In this work, we will refer to the 
Zipoy-Voorhees solution as to the q metric for a 
reason that will be explained below. Since its 
discovery, many works have been devoted to the 
investigation of its geometric and physical 
properties. In particular, it has been established 
that it describes an asymptotically flat spacetime, it 
possesses two commuting, hypersurface 
orthogonal Killing vector fields that imply that the 
spacetime is static and axially symmetric, it 
contains the Schwarzschild metric as a special case 
that turns out to be the only one with a true 
curvature singularity surrounded by an event 
horizon [4, 5, 6, 7, 8]. 

In a recent work [9], it was proposed to 

interpret the q metric as describing the 
gravitational field of a distribution of mass whose 
non-spherically symmetric shape is represented by 
an independent quadrupole parameter. Moreover, 
the curvature singularities turn out to be localized 
inside a region situated very close to the origin of 
coordinates. Consequently, this metric can be used 
to describe the exterior gravitational field of 
deformed distributions of mass in which the 
quadrupole moment is the main parameter that 
describes the deformation. Tue question arises 
whether it is possible to find an interior metric that 
can be matched to the exterior one in such a way 
that the entire spacetime is described. To this end, 
it is usually assumed that the interior mass 
distribution can be described by means of a perfect 
fluid with two physical parameters, namely, energy 
density and pressure. The energy-momentum 
tensor of the perfect fluid is then used in the 
Einstein equations as the source of the 
gravitational field. It turns out that the system of 
the corresponding differential equations cannot be 
solved, because the number of equations is less *Corresponding author e-mail: saken.yan@yandex.com 
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than the number of unknown functions. This 
problem is usually solved by imposing equations 
of state that relate the pressure and density of the 
fluid. In this work, however, we will explore a 
different approach that was first proposed by 
Synge [10]. To apply this method, one first uses 
general physical considerations to postulate the 
form of the interior metric and then one evaluates 
the energy-momentum tensor of the source by 
using Einstein’s equations. In this manner, any 

interior metric can be considered as an exact 
solution of the Einstein equations for some energy-
momentum tensor. However, the main point of the 
procedure is to impose physical conditions on the 
resulting matter source so that it corresponds to a 
physical reasonable configuration. In general, one 
can impose the energy conditions, the matching 
conditions with the exterior metric, and conditions 
on the behavior of the metric functions near the 
center of the source and on the boundary with the 
exterior field. 

This work is organized as follows. In Sec. 2, 
 

we review the main properties of the Zipoy-
Voorhees transformation in different coordinate 
systems. In Sec. 3, we consider the q metric as 
describing the exterior gravitational field of a 
deformed source with mass and quadrupole 
moment. In Sec. 4, we propose a particular interior 
solution and derive the corresponding energy-
momentum tensor by using the Einstein equations. 
Finally, Sec. 5 contains discussions of our results 
and suggestions for further research. 
 
The Zipoy–Voorhees transformation  

 
Zipoy [1] and Voorhees [2] investigated static, 

axisymmetric vacuum solutions of Einstein’s 

equations and found a simple transformation which 
allows to generate new solutions from a known 
solution. To illustrate the idea of the transfor-
mation, we use the general line element for static, 
axisymmetric vacuum gravitational fields in 
prolate spheroidal coordinates ),,,( yxt :   
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where the metric functions   and   depend on 

the spatial coordinates x  and y , only, and   

represents a non-zero real constant. The correspon-
ding vacuum field equations can be written as   
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It can be seen that the function   can be 

calculated by quadratures once   is known. If we 

demand that   be asymptotically flat, i.e.,   
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it can be shown [11] that using quadratures the 
asymptotically flat function   can be calculated as   
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Suppose that a solution 0  and 0  of this 

system is known. It is then easy to see that 

0=   and 0

2=   is also a solution for any 

constant  . This is the Zipoy-Voorhees 
transformation that can be used to generate new 
solutions. The simplest example is   
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which is generated from Schwarzschild solution 
( 1= ). This metric is known in the literature as 
the  metric to emphasize the fact that it is 
obtained by applying a Zipoy-Voorhees 
transformation with constant  . 

A different representation can be obtained by 
using cylindrical coordinates that are defined as   

.=,1))((1= 22 xyzxy    (8) 

and in which the line element becomes   
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 Then, the vacuum field equations can be expressed as   
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 In this representation, the Zipoy-Voorhees metric can be expressed in the Weyl form [3]   
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 where na  0,1,...)=(n  are arbitrary constants, 

and )cos( nP  represents the Legendre 

polynomials of degree n . The Zipoy-Voorhees 
metric can be obtained by choosing the constants  
 

na  in such a way that the infinite sum (12) 

converges to (7) in cylindric coordinates. A 
simpler representation, however, is obtained in 
spherical coordinates which are defined by means 
of the relationships   
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An analysis of the Newtonian limit of this 

metric shows that it corresponds to a thin rod 
source of constant density  , uniformly 
distributed along the z axis from =1z  to 

=2z . In the literature, usually a different 

constant   is used instead of  , and, therefore,  
 

the Zipoy-Voorhees metric in the representation 
(15) is known as the Gamma-metric. 

 The q metric 

If we start from the Schwarzschild solution and 
apply a Zipoy-Voorhees transformation with 

q1= , we obtain the metric   

, 
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In [9], it was shown that this is the simplest 

generalization of the Schwarzschild solution that 
contains the additional parameter q , which 
describes the deformation of the mass distribution.  
 

In fact, this can be shown explicitly by calculating 
the invariant Geroch multipoles [12]. The lowest 
mass multipole moments nM , 0,1,=n  are 

given by   
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whereas higher moments are proportional to mq  

and can be completely rewritten in terms of 0M  

and 2M . Accordingly, the arbitrary parameters m  

and q  determine the mass and quadrupole which 
are the only independent multipole moments of the 
solution. In the limiting case 0=q  only the 

monopole mM =0  survives, as in the 

Schwarzschild spacetime. In the limit 0=m , with 
0q , all moments vanish identically, implying 

that no mass distribution is present and the 
spacetime must be flat. The same is true in the 
limiting case 1q  which corresponds to the 
Minkowski metric. Notice that all odd multipole 
moments are zero because the solution possesses 
an additional reflection symmetry with respect to 
the equatorial plane /2= . 

 
The Kretschmann scalar 

The deformation is described by the quadrupole 
moment 2M  which is positive for a prolate source 
and negative for an oblate source. This implies that 
the parameter q  can be either positive or negative. 

Since the total mass 0M  of the source must be 

positive, we must assume that 1> q  for positive 

values of m , and 1< q  for negative values of m . 
We conclude that the above metric can be used to 
describe the exterior gravitational field of a static 
positive mass 0M  with a positive or negative 

quadrupole moment 2M . The behavior of the mass 

moments depends on the explicit value of q . We will 

refer to the metric (17) as to the q metric to the 
emphasize its physical significance as the simplest 
solution with an independent quadrupole moment. 
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can be used to explore the singularities of the 
spacetime. We can see that only the cases 1= q  

and 0=m  are free of singularities. In fact, as 
noticed above, these cases correspond to a flat 
spacetime. A singularity exists at 0r  for any 
value of q  and m . In fact, for negative values of 

m  this is the only singular point of the spacetime 
which thus describes a naked singularity situated at 
the origin. In the range 1<)(22 qq   with 0>m , 
there is singularity at those values of r  that satisfy 

the condition 0=sin2 222 mmrr  , i.e, these 
singularities are all situated inside a sphere of 

radius m2 . Finally, an additional singularity 
appears at the radius mr 2=  which, according to 
the metric (17), is also a horizon in the sense that 
the norm of the timelike Killing tensor vanishes at 
that radius. Outside the hypersurface mr 2=  no 
additional horizon exists, indicating that the 
singularities situated at mr 2=  and inside this 
sphere are naked. This result is in accordance with 
the black holes uniqueness theorems which 
establishes that the only compact object possessing 
an event horizon that covers the inner singularity is 
described by the Schwarschild solution. 

The position of the outer most singularity 
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situated at mrs 2=  can be evaluated by using the 

expression for the invariant mass, i.e, 
)/(12= 0 qMrs  . In astrophysical compact 

objects, one expects that the quadrupole moment is 
small so that 1<<q . Then the radius sr  of the 

singular sphere is of the order of magnitude of the 
Schwarzschild radius 02M  of a compact object of 

mass 0M , which is usually located well inside the 

matter distribution. It follows that it should be 
possible to “eliminate" the naked singular sphere 

by finding the interior metric of an appropriate 

matter distribution that would fill completely the 
singular regions. 
 
The interior metric 

 
 It is very difficult to find physically reasonable 

solutions in general relativity, because the under-
lying differential equations are highly nonlinear 
with very strong couplings between the metric 
functions. In [13], a numerical solution was 
derived for a particular choice of the interior static 
and axially symmetric line element
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To solve Einstein’s equations with a perfect fluid 
source, the pressure and the energy must be 
functions of the coordinates r  and  . However, 
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the corresponding differential equations reduces 
drastically:
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In addition, the function k  is determined by a set of 
two partial differential equations which can be 
integrated by quadratures once f  and   are 
known. The integrability condition of these partial 
differential equations turns out to be satisfied 
identically by virtue of the remaining field 
equations. It is then possible to perform a numerical 
integration by imposing appropriate initial 
conditions. In particular, if we demand that the 
metric functions and the pressure are finite at the 
axis, it is possible to find a class of numerical 
solutions which can be matched with the exterior 
q metric with a pressure that vanishes at the 

matching surface. 
A different approach consists in postulating 

the interior line element and evaluating the 
energy-momentum tensor from the Einstein 

equations. This method was first proposed by 
Synge and has been applied very intensively to 
find approximate interior solutions [14, 15]. To 
find the interior metric we proceed as follows. 
Consider the case of a slightly deformed mass.  

This means that the parameter q  can be 
considered as infinitesimal and this fact can be 
used to construct the interior metric functions. In 
fact, to the zeroth-order an interior line element 
can be obtained just by assuming that instead of 
the constant m , the function )(r  appears in the 

metric. In the case of the q metric, the functions 
entering the metric can be separated as 
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where 1c  and 2c  are constants. Then, to the first order in q , we can approximate this combination of functions as   
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Following this procedure, an appropriate interior line element for the q metric (17) can be expressed as 
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where )(= r , )(= r  and ),(=  r . 

Let us now consider the boundary conditions 
at the matching surface by comparing the above 

interior metric (28) with the q metric to first 

order in q , i.e., 
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 A comparison of the metrics (28) and (29) shows that they coincide at the matching radius mrr = , if the 
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are satisfied. Notice that we reach the desired 
matching by fixing only the radial coordinate as 

mrr = , but it does not mean that the matching 

surface is a sphere. Indeed, the shape of matching 
surface is determined by the conditions constt =  
and mrr =  which, according to Eq.(29), determine 

a surface with explicit  dependence. 

Finally, we calculate the Einstein tensor 
G   
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which partially determines the function ),(  r . 

Furthermore, the energy conditions 0t
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to respectively. A preliminary numerical analysis 
of these equations shows that it is possible to find 
solutions that satisfy the boundary conditions and 
the energy conditions simultaneously. In fact, the 
pressure and the energy density obtained in this 
way show a profile that is in accordance with the 
physical expectations. We conclude that by 

applying Synge’s method it is possible to find 

physically reasonable interior solutions for the 
exterior q metric. However, it will be necessary 
to further analyze the numerical solutions to find 
the ranges of boundary values of the main physical 
parameters that one can use to obtain physical 
configurations. 
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Conclusion 
 

In this work we discussed the Zipoy-Voorhees 
metric in different coordinate representations. We 
propose a different interpretation in terms of the 
quadrupole parameter q  and, therefore, we designa-

te it the q metric. We found all the singularities of 
the underlying spacetime. It was shown that only the 
Minkowski spacetime is free of curvature singula-
rities, and that only the Schwarzschild spacetime 
possesses an event horizon that separates the inner 
singularity from the exterior spacetime. For all the 
remaining cases with non-vanishing quadrupole 
moment, it was established that naked singularities 
are present inside a sphere with a radius which is of 
the same order or magnitude of the Schwarzschild 
radius for astrophysical compact objects. 

We investigated the possibility of finding 
interior metrics that could be matched with the 
exterior q metric. In particular, we postulated a 
specific line element for the interior metric and used 
Synge’s method to derive the matter distribution. 

The matching conditions and the energy conditions 
were calculated explicitly in the case of a deformed 
source with a small quadrupole parameter. It was 
shown that the resulting system of differential 
equations is compatible and that particular solutions 
can be calculated by using numerical methods. 

The resulting system of differential equations 
for the functions of the interior metric indicates that 
one can try to find analytical solutions, at least in the 
case of a slightly deformed mass distribution. To do 
this, it will be necessary to investigate in detail the 
mathematical properties of the differential equa-
tions. This is a task for future investigations. 

Moreover, we expect to apply the same method 
in the case of rotating sources. The rotating 
q metric was derived in [11], but no attempts 

have been made to investigate its physical 
properties and the possibility of matching it with a 

suitable interior metric. This problems will be the 
subject of future research. 
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