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Abstract. On the basis of the investigation of the asymptotic behavior of the correlation functions of the 
corresponding field currents with the necessary quantum numbers the analytic method for the 
determination of the mass spectrum and decay constants of mesons consisting of c and b quarks with 
relativistic corrections is proposed. The dependence of the constituent mass of quarks on the current mass 
and on the orbital and radial quantum numbers is analytically derived. The mass and wave functions of 
the mesons are determined via the eigenvalues of nonrelativistic Hamiltonian in which the kinetic energy 
term is defined by the constituent mass of the bound state forming particles and the potential energy term 
is determined by the contributions of every possible type of Feynman diagrams with an exchange of 
gauge field. In the framework of our approach the mass splitting between the singlet and triplet states is 
determined, and the width of E1 transition rates in the cc , bb  and bc  systems are calculated. The 
obtained results are satisfactorily agree with the experimental data. 
Keywords: mass spectrum, correlation function, constituent mass, nonrelativistic Hamiltonian, radiative 
decay. 

 
 
Introduction 
The energy spectrum of the bound state can be 

determined with a good precision within the 
framework of nonrelativistic quantum mechanics 
(NRQM) when a good selection of the potential is 
made. However, the nonrelativistic Schrodinger 
equation (SE), which gives a mathematically 
correct description of the bound state, is no longer 
sufficient since for the description of modern 
experimental results, obtained in both atomic [1] 
and hadronic physics [2], it is necessary to take 
into account the relativistic correction. 
Nevertheless, the nonrelativistic SE is the reliable 
tool for the bound state energy research and its 
determination. In this case, real relativistic 
corrections are small, so the theoretical problem 
reduces to obtaining the relativistic corrections to 
the nonrelativistic interaction potential in the 
formalism of quantum field theory (QFT). This  
 
 
 

idea underlies the Breit potential [3] and the 
effective nonrelativistic quantum field theory of 
Caswell and Lepage [4]. Both these approaches use 
the scattering matrix as a source of required 
corrections. In the framework of quantum 
electrodynamics (QE) the authors of [5] studied the 
scattering matrix with appropriate Feynman 
diagrams by taking into account the 
renormalization and then taking the nonrelativistic 
limit, so they obtained the interaction potential 
with the relativistic corrections. Thus, the 
nonrelativistic QED or NRQED method for the 
determination of the energy spectrum by taking 
into account relativistic corrections was 
formulated. Subsequently, this method was 
improved in [6]. However, in these works, the 
relativistic corrections within the framework of the 
perturbation theory were taken into account mainly 
to the interaction potential, and the correction to 
the kinetic part of the interaction Hamiltonian was 
almost ignored. The relativistic correction to the 
kinetic part of the Hamiltonian in the usual 
quantum mechanical formalism is included only in 
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the framework of the relativistic SE. It is known 
that the determination of the energy spectrum and 
wave functions of the bound state consisting of a 
few particles from the relativistic SE, from the 
point of view of mathematical calculations is 
almost impossible. Therefore, the inclusion of the 
relativistic corrections into the determination of the 
properties of the relativistic bound state as a 
potential and kinetic part of the interaction 
Hamiltonian is one of the most urgent problems of 
modern theoretical study. Our work is devoted to 
studying this problem. 

In our approach [4], the mass of the bound 
state is determined by the asymptotic behavior of 
the correlation function of the corresponding 
currents with the necessary quantum numbers. The 
correlation function, which is expressed in terms of 
the quantum-field Green function is represented as 
a functional integral, which allows one to allocate 
the necessary asymptotic behavior, and the 
averaging over the external gauge field can be 
performed accurately. The resulting representation 
is similar to the Feynman functional path integral 
[7] in nonrelativistic quantum mechanics. In this 
case, the interaction potential is determined by the 
Feynman diagram, the resulting exchange of the 
gauge field, and the mass in the SE is the 
constituent differing from the mass of the initial 
state of the system, i.e. one kinetic part of the 
Hamiltonian is expressed in terms of the 
constituent mass of the constituent particles, and it 
differs from the initial mass state. Our results show 

that the difference between these masses for the 
light particles is essential, in particular, for the 
electron and for heavy particles such as an isotope 
of hydrogen it is not noticeable. Thus, thanks to the 
constituent mass of the constituent particles one 
can take into account relativistic corrections to the 
kinetic part of the interaction Hamiltonian. 

The paper is organized as follows. In section 2, 
we describe in detail the determination of the mass 
and constituent mass bound state system. In section 
3, the mass spectrum of mesons consisting of c and 
b quarks with the orbital and radial excitations is 
defined. The dependence of the constituent mass of 
the constituent particles on the mass of the initial 
state, as well as radial and orbital quantum 
numbers is determined. The obtained results are in 
satisfactory agreement with the available 
experimental data.  

 
1. Determining the mass of the relativistic 

bound state 
 
We now briefly discuss the details of our 

approach. Let us denote (x) (x) (x)J  as the 
current of scalar charged particles. If we neglect 
the annihilation channel, then it is convenient to 
represent the considered correlators as the 
averaging over the gauge field ( )A x  of a product 
of the Green functions ( , | )mG x y A  of the scalar 
charged particles in the external gauge field: 

 

1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , | ) ( , | ) .
m m A

x y J x J y x x y y G x A G y x A     (1) 

 
The Green function )|,( AyxGm  for the scalar particle in the external gauge field is determined from the 

equation 
 

2 2
2

2
( ( )) ( , | ) ( )m

g c m
i A x G x y A x y

x c
                                (2) 

 
The solution of (2) can be represented as a functional integral in the following way (for details see [8]): 

 
 

2 1
2

2
0 0

( )( )
( , | ) exp exp ( )

(4 ) 4m

Zds x y
G x y A sm d ig d A

s s d
                    (3) 

 
 
Here the following notation is used:  
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1
2

0

1
( ) ( ) 2 ( ); exp ( ) ,

2
Z x y y sB d N B d B                      (4) 

 
with the normalization  

 
(0) (1) 0B B  1,d   

where N is the normalization constant. In averaged 
over the external gauge field )(xA  we limit 
ourselves to the lowest order, i.e. we take into 
account only the two-point Gaussian correlator: 

 
1

exp ( ) ( ) exp ( ) ( ) ( ) .
2A

i dxA x J x dxdyJ x D x y J y        (5) 

 
Here )(xJ  is the real current. The propagator of the gauge field has the following form: 
 

2

,( ) ( ) ( ) ( ) ( )dA
D x y A x A y D x y D x y

x y
               (6) 

 
where 

2

4 2 4 2 2

exp exp ( )
( ) , ( ) .

(2 ) (2 )d

iqx iqxdq dq d q
D x D x

q q q
                            (7) 

 
So the external field exists only in a virtual 

state. The mass of the bound state is usually 
defined through the correlation function in the 
following way: 

 
ln ( )

lim .
| |x y

x y
M

x y
                 (8) 

 

Thus, if we know the correlation function, then 
we can determine the bound state mass. 

From (8) one can see that for determination of 
the mass M one needs to calculate correlation 
function Π(x) in the asymptotics |x| → ∞. 
Substituting (3) into (1) and averaging over the 
external gauge field we obtain: 

 

2 2
1 2 1 2

1 2 1 22 2
0 1 2

| | | |
( ) ( , ) exp ( ) ( )

(8 ) 2 2
d d m mx x

x J
x

    (9) 

here 

2 2

1 2 1 2 1 2 1 1 2 2 1,1 2 ,2 1,2

0

1
( , ) exp [ ( ) ( )] exp{ }, 2 ,

2

x

J N N r r d r r W W W W W   (10) 

 
and following notation is used: 

 
 

 
2

'( ) ( ) ( ) '( )
, 1 2 1 1 2 2

0 0

( 1) ( ) ( ( ) ( )) ( )
2

i j i i j j
i j

g
W d d Z D Z Z Z                   (11) 

 
 
Representation (10) is analogous to the 

quantum Green function in a from the Feynman 
functional integral, when two particles with masses 

1  and 2  interacts via the nonlocal potential Wi,j. 

Therefore, we call masses 1m  and 2m  the current 
masses, and parameters 1  and 2  the constituent 
masses. Note that the functional integration in (10) 
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is over the four dimensional vectors (4)
1 1 1( , )r rr  

and (4)
2 2 2( , )r rr . The value of Wi,j is determined 

by the contribution of various types of Feynman 
diagrams. There are two types of interaction: the 
first is the interaction of the constituent particles by 
the gauge field, the contribution of which is 
determined immediately as W1,2; the second is the 
interaction of the constituent particles with each 
other, i.e. the self-energy diagrams, the 
contribution of which is determined as W1,1 and 
W2,2. In the nonrelativistic limit the value of W1,2 
correspond to a potential interaction W1,1, W2,2 that 
determine the contribution of the particle mass 
renormalization. 

In the asymptotic |x| → ∞ the integral (10) 
behaves as: 
 

1 2 1 2
lim ( , ) exp{ ( , )},
x

J xE       (12) 

 
where the function 1 2( , )E  depends on the 
coupling constant g and the parameters 21,  and 
is independent of the masses 21,mm . If |x| → ∞ 
then the integral (10) is evaluated by the saddle 
point method. And for the bound state mass we 
obtain: 
 

2 2

1 2
1 2 1 2

1 2

1
min 2 ( , ) .

2

m m
M E   (13) 

 
Thus, the problem reduced to calculation of the 

functional integral (10). However, this integral is 
not calculated in a general way and is defined in 
the framework approaches. Nowadays, the exact 
mathematical methods of evaluating this integral 
are absent. Therefore, it is necessary to involve 
different physical assumptions or approaches to 
somehow perform the integration over the fourth 
component ( 4) ( 4)

1 2,r r . The integration over the fourth 
component electively corresponds to the transition 
to the nonrelativistic limit. In other words, the 
interaction potential with the corrections related to 
the nonperturbative, relativistic and non-local 
character of the interaction is determined. In 
particular, if in the functional Wi,j in (11) we 
neglect the dependence on ( 4) ( 4)

1 2,r r , then the system 
(10) reduced to the Feynman path integral for the 
motion of scalar particles with masses 1  and 2  

in the NRQM [7] with the local potential. In this 
approximation, according to (10), the interaction 
Hamiltonian of the scalar particles with masses 1  
and 2  can be represented as: 

 
2 2

1 2 1 2

1

1 1
( ),

2 2
H VP P r r           (14) 

 
where 1 2( )V r r  is the interaction potential, which 
is expressed through Wi,j, then 1 2( , )E  is an 
eigenvalue of the interaction Hamiltonian (14), i.a. 

 
1 2 1 2 1 2( , ) ( , ) ( , ).H Er r r r    (15) 

 
By minimizing (13), we get the equation for 

j : 
2

1 2
( , )

2 0; 1, 2.j

j j

j j

m dE
j

d
    (16) 

 
The parameters 1 2,  have the dimension of 

mass. In further calculations we introduce a new 
parameter 

1 2

1 1 1
.    (17) 

 
Then equation (13) takes the form 

 

1 2 1( ); ( , , ) ( ),
dE

M E E E
d

(18) 

 
where 

 

2 2

1 1

2 2

2 2

2 ;

2 .

dE
m

d

dE
m

d

             (19) 

 
In our approach, the energy spectrum and the 

wave function of the bound state are determined by 
the SE with the constituent masses 1  and 2 . 

Now we apply our research to determine the 
mass and energy spectrum, as well as to determine 
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the decay width of mesons consisting of b and c 
quarks with orbital and radial excitations. 

 
2.Meson spectra with orbital excitation 
 
2.1 The interaction Hamiltonian 
In this section, the mass spectrum of the 

charmonium, bottom and cB  mesons with spin-
spin and spin-orbit interactions is determined from 
the SE with the constituent mass. The total 
interaction Hamiltonian of quarks is represented 
as: 

,spinc HHH      (20) 
 
where cH  is the central part 

.
3
4

2
1 2

r
rPH s

c


  (21) 

 
The second part of the Hamiltonian is defined 

in the standard from (for details see [9,10]): 
 

,TTLSSSspin HHHH    (22) 
 

here SSH  is the spin-spin interaction Hamiltonian: 
 

1 2

1 2

1 2 1 2

2 32 ( )
( ) ( ),

3 9
s

SS V

S S
H S S V r (23) 

 
and HLS is the spin-orbital interaction Hamiltonian: 
 

2 2 2
1 2 1 2 1 22 2

1 2

2 2 2 2
1 2 1 2

1 1
{[(( ) 2 )( ) ( )( )]

4

[( )( ) ( )( )] },

LS V

s

H V
r r

V
r

L S L S

L S L S
                     

(24) 

 
 
and at last, the tensor interaction Hamiltonian is 

 
2

122

1 2

1 1
[ ] .

12
TT V V

H V V S
r r r

       (25) 

 
here VV  is the vector potential corresponding to 
the one-gluon exchange: 

 
4 1
3

s
vV

r
  (26) 

 
and SV  is the confinement potential 

 
rVs                          (27) 

 
and also the following notation is used, 

 
1 2 1 2

2 2 2

12

; ;

4 3
( ) 3( ) .

(2 3)(2 1) 2
S

S S S S S S

L S LS LS

   (28) 

 
 

 
Using expressions (20)-(28) for the interaction 

Hamiltonian we calculate the mass spectrum of the 
mesons.  

 
2.2 Determination of the quarkonium 

energy spectra 
Now using the explicit form of the total 

Hamiltonian let us start to determine the 
quarkonium energy spectrum. According to 
(14,15) all from the Schrodinger equation 

 
HΨ = EΨ.    (29) 

 
we will determine the energy spectrum and the 
wave function (WF). We will apply the oscillator-
representation (OR) method [11] for the 
determination of eigenvalues and the wave 
functions (WF). According to the OR, let us 
change the variables in this following way (see for 
details in. [11]): 

 
r = q2ρ, Ψ ⇒ Ψ(q2) = q2ρℓΦ(q2)    (30) 

 
Using the atomic system of units ( 1с ), 

considering (20)-(28) and after some standard 
simplifications we obtain from eq. (24) for the 
modified SE: 



93M. Dineykhan et al.

International Journal of mathematics and physics 4, №1, 88 (2013)

22
2 2( 2 1) 2 2(3 1) 2( 1)

2

2 2
2( 1) 2 2( 1)

1 2 2 20
1 2 1 2

2
2 2 2 2 12

1 2 1 2 2( 1)

1 2

161 1
4 4

2 3

64
( ) lim sin( )

9

4
[(( ))( ) ( )( )]

3

4

s

s

s

d
Eq q q

q q q

S S dtq t tq q

S

q
L S L S

2
2 2 2 2

1 2 1 2 1 22 2 2( 1)

1 2

[(( ) 2 )( ) ( )( )] ( ) 0
3

s q
q

L S L S

              
 (31) 

 
 

where d is the dimension of the auxiliary space 
 

2 2 4d                    (32) 
 
As a result of the change of variables, we get 

the modified SE in the d-dimensional auxiliary 
space Rd. From (12) and (13) it follows that the 
orbital quantum number ℓ has entered into the 
dimension d of the space. This technique allows us 
to determine all characteristics we are interested in, 
the spectrum and WF by solving the modified SE 
only for the ground state in the d-dimensional 
auxiliary Rd space. 

The wave function 
2

( )
т

q  of the ground state 
in Rd depends only on the q2 variable. Thus, the 
operator 

2

2

1
q

d
q q q

                 (33) 

 
can be identified with the Laplacian in the 
auxiliary Rd space which acts on the ground-state 
wave function depending only on the radius q. 
Proceeding from the modified SE: 

 
( ) ( ) ( )H q E q                  (34) 

 
according to (31),we obtain that the energy 
spectrum ε(E) is equal to zero in Rd. 

 
 

( ) 0E                             (35) 
 
We will consider this equation as the condition 

for determination of the energy spectrum E of the 
initial Hamiltonian. Following the OR method, let 
us represent the canonical variables in terms of the 
creation (a+) and annihilation (a) operators in the 
Rd space; 

 

,

, ,
22

1, ..., , [ , ]

j j j j

j j

i j i j

a a a a
q P

i

j d a a

 (36) 

 
where ω is the oscillator frequency which has been 
unknown yet. Substituting (36) into (34) and 
carrying out ordering by the creation and 
annihilation operators we obtain the interaction 
Hamiltonian: 

 
0 0 ( ) ,IH H E H                (37) 

 
Here H0 is the Hamiltonian of free oscillators 
 

)(0 jj aaH                      (38) 
 

and 0  is the energy of the ground state in the 
zeroth approximation 
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22

0 2 1 1

/ 22

1 2
,03 1

1 2

2 22 1

12

2 1

1 1 2

164 ( / 2 2 1) ( / 2 1)
( )

4 ( / 2) 3 ( / 2)

32 ( )4 ( / 2 3 1)

( / 2) 9 ( / 2)

4 4( / 2 1) ( / 2 1)

( / 2) 3 ( / 2)

s

d

s

s s

d E d d
E

d d

S Sd

d d

Sd d

M d d

1

2

2

( / 2 1)
.

3 ( / 2)

d

M d

                (39) 

 
Here the following notation is used: 
 

 
 

2 2 2 2

1 2 1 22 2 2

1 1 2

2 2 2

1 2 1 2 1 22 2 2

2 1 2

1 1
( )( ) ( )( ) ;

1 1
(( ) 2 )( )) ( )( ) .

M

M

L S L S

L S L S

                               (40) 

 
The interaction Hamiltonian HI can be represented 

also in the normal form of the creation a+ and 
annihilation а  operators and it does not contain the 
quadratic terms of the canonical variables 

 

2 ( )

2

0

22 2 2 3

2 1 3 1 1

2 22 1 1

12

2 1 2

1 1 2 2

2

1

exp{ (1 )}: :

164 4

(1 2 ) (1 3 ) 3 (1 )

4 4

(1 ) 3 (1 ) 3 (1 )

16 (

d

i x q

I

s

s s

s

d
H dx x e

Ex x x

Sx x x

M M

S S 2 3 2 2

2

2 1
01 2

) ( 1)
lim .

9 (2 1)! 2 3 (1 2 2 )

j j j

j
j

x

j j j

                               (41) 

 
 
Here : ⋆ : is a symbol of normal ordering, and 

we also use the notation 
 

2
2

1
1

2
x xe e x x  

 
In quantum field theory, after the 

representation of the canonical variables in terms 
of the creation and annihilation operators and after 
transformation of the interaction Hamiltonian into 
the normal form, the requirement of the absence of 
the second-order field operators is equivalent, in 
essence, to the renormalization of the coupling 
constant and the wave function [12]. Moreover, 
such a procedure permits one to take the main 
contribution into consideration in terms of the 

mass renormalization and in terms of the vacuum 
energy. In other words, all quadratic terms are 
completely included in the free oscillator 
Hamiltonian. This requirement allows us to 
formulate the following condition, according to the 
OR 

0 ( )
0

E
                        (42) 

 
for the purpose of finding the oscillator frequency 
ω which defines the main quantum contribution. 
Taking into account (39) and from equations (35), 
(42) we can calculate the energy spectrum E of the 
initial system. So let us restrict ourselves only to 
the consideration of the zeroth-order 
approximation. 
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2.3 Determination of the mesons mass 
spectrum for the ground state. 

In this section, we will determine the mass 
spectrum and wave functions of mesons consisting  
 

of b and c quarks. Consider the ground state, i.e, 
define the properties of , / , ,c bJ  and cB  
mesons taking into account the spin-spin 
interaction. From (20) for the ground state: 

 
2 124 216 16(3 ) (2 ) 4 (4 ) [ ( 1) 3 / 2]( ) ,0 2 1 1 3 14 (1 ) (1 ) (1 ) 3 (1 )3 1 2

Ed s ss sE
    

 (43) 

 
where s is spin of the mesons. Taking into account and from equations we obtain for the oscillator frequency: 

 
2 4216 16(2 ) 4 (4 ) [ ( 1) 3 / 2]3 0.
3 (2 ) (2 ) 3 (1 )1 2

s ss s               (44) 

 
and for the energy of the ground: 
 

 
 

32

2

1 2

4 (2 ) 4 [ ( 1) 3 / 2](2 ) (4 )
min

8 (3 ) 3 (3 ) (3 ) 9 (3 )
s s s s

E                     (45) 

 
 
According to (35), the mass of singlet triplet 

states 
2

1
1 1

1 1

2

2
2 2

2 2

2 0

2 0

m dE

d

m dE

d

      (46) 

 
Here 1m  and 2m  are the current masses of the 

quarks. As follow, the experimentally fitted value 
of the current masses of quarks is reader as 

 
1.275 0.025 ;

(1 ) 4.65 0.03 .
c

b

m GeV

m S GeV
                (47) 

 
The value of the running coupling constant of 

the quark-gluon interactions is determined as 
follows: 

 
1 2

0 12

1 2

22
11 , ,

3 f fn n             (48) 

 
where fn  is the flavor quantum number and Λ = 
0.169 GeV is the scale of confinement for heavy 
quarks. Then the mass of mesons consisting of 
these quarks is defined as: 

2 2

1 2
1 2

1 2

1

2

m m
M E            (49) 

 
The results of numerical calculations are 

introduced in Table 1. According to (47), for the 
current quark masses use the values cm 1.275, 

bm 4.62 GeV. The oscillator frequency and the 
constituent masses are defined from the quark 
equation presented in (44) and (47), respectively. 
From Table 1 we can see that the constituent quark 
masses are greater than the current masses. 
According (49), with changing of the constituent 
quark masses a running coupling constant of the 
quark-gluon interaction changes, the values are 
also given in Table 1. It can be see that our results 
for the meson masses are in good agreement with 
the experimental data. The values of WF at the 
coordinate Ψ(0) are also given in Table 1. For the 
ground state we have 

 
3

2 1
| (0) |

4 (3 )n                 (50) 

 
Using 2| (0) |n  let us determine the leptonic 

decay constant of the vector and pseudo-scalar 
mesons: 
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,

,

12
| (0) | ,NR NR

p p

p

f f
M

          (51) 

 
where vpM ,  is the mass of the vector and the 
pseudo-scalar mesons. The leptonic decay width of 
the vector mesons is determined as follows: 

 
2 2

2
2

16 16
( ) | (0) | (1 )

3
em Q s

V

c
V cc

M
     (52) 

 
where 1 / 137em  is the electromagnetic coupling 
constant; Qе  is the quark current, and VM  is the 

vector meson mass. The numerical results for the 
ground state are in Table 1. 

 
2.4 Determination of the mass spectrum of 

mesons with the orbital excitation 
In this section, we will calculate the energy and 

mass spectrum of the mesons consisting of c and b 
quarks with orbital excitation. From (39) it is seen 
that when 0l  then the spin interactions are 
defined by only the spin-orbit interaction. In this 
case, the interaction Hamiltonian HI does not 
contribute. First of all, let us consider the case  
S = 0. After some calculations, and taking into 
account (39) from (42) we obtain en equation for 
determining the oscillator frequency: 

 
2 216 (2 2 ) 4 (4 2 )3 2 0,

3 (2 2 ) (2 2 )
l ls
l l

                      (53) 

  
 
Table 1 – Mass spectrum of mesons consisting of b and c quarks for the ground state. Experimental data from Ref [2]. 
 

  сс  bb  bс  

S=0 cm GeV  1.275 - 1.275 

 bm GeV  - 4.62 4.62 

 s  0.30366 0.194679 0.248935 

 

2

exp

2 2| (0) |

c

b

our

GeV

E GeV

GeV

GeV

GeV

M MeV

M MeV

GeV

f GeV

 

0.195

0.413530

0.526448

0.652

1.42862

2980.05

2980.3 1.2

0.047003

0.435053

 

0.153

0.157253

0.651103

1.164

4.73493

9400.04

0.196457

0.500795

 

0.195

0.363173

0.46495

0.648335

1.51306

4.68082

6.2773

6277 4

0.525517

0.316955
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S=1 

exp

2 2

exp

| (0) |

s

c

b

our

our

E

GeV

GeV

GeV

M MeV

M MeV

GeV

f GeV

keV

keV

 

0.2990855

0.519023

1.03926

1.4311

1.47617

3.09644

3096.916 0.11

0.1004

0.62372

6.135

5.55 0.14

 

0.194459

0.216613

1.24871

3.4511

4.7581

9.4603

9460.3 0.26

0.5973

0.8704

1.330

1.340 0.018

 

0.247683

0.412532

1.11493

2.0512

1.53652

4.71302

6.33071

0.219078

0.644412

 

 
and for the energy:  

 
2

2

(2 2 ) (2 2 ) (4 2 )
min .

8 (3 2 ) 3 (3 2 ) (3 2 )

l l l
E

l l l
                              (54) 

 
 
Taking into account (53), (54) and (46) from 

(49) we determine the meson masses with orbital 
excitation. The results of numerical calculations 
introduced in Tables 2 and 3.  

Now we will start to calculate the energy 
spectrum of meson spin triplet state S = 1 with 
orbital excitations. The equation that determines 
the oscillator frequency can be written as 

 
 

2
2

2

1

2 2 44

12

2

1 2 2

2 216 (2 2 ) 4 (4 2 ) (2 2 )3 2
3 (2 2 ) (2 2 ) (2 2 )

4 (2 ) (2 )
0

(2 2 ) (2 2 )
s s

l l ls
l l M l

S l l

l M l

          (55) 

 
and for the energy  
 

 
 
 

2

2 2

1

33

12

2

1 2 2

(2 2 ) (2 2 ) (4 2 ) (2 2 )
min

8 (3 2 ) 3 (3 2 ) (3 2 ) 4 (3 2 )

(2 ) (2 )

3 (3 2 ) (3 2 )
s s

l l l l
E

l l l M l

S l l

l M l

           (56) 

 
 
The numerical results for the P and D states are shown in Tables 2 and 3, respectively. 
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2.5 Determination of the mass spectrum of 
mesons with the radial excitation 

In this section, we will determine the mass and 
energy spectrum of the mesons only with the radial  
 

excitation. In this case, the energy ε0(E) of the 
zeroth approximation in OR is determined by (43), 
and for the interaction Hamiltonian from (41), we 
have 

 
2 (1 ) 2 ( )

22 2 2 2

3 1 1

2 2 3 2 2

1 2

2 2 1
01 2

( ) : :

164 4

2 1 (1 2 ) (1 3 ) 3 (1 )

16 ( ) ( 1)

9 (2 1)! (2 1) (1 2 2 )lim

d x i x q

I

s

j j j

s

j
j

d
H dx e e

Ex x x

S S x

j j j
 

              (57) 

 
 
In this case, the energy spectrum has the following form: 
 

0 2 2 2 2 2( ) ( ) 2 | | | |c s
n I IE E n n H n n H n

                                    
(58) 

 
where c

IН  is the central part and s
IН  is the spin 

part of the interaction Hamiltonian. After some 
simplifications for the energy spectrum with radial 
excitations we get 

 

2

2
32

3

2

1 1 1 3 1

1
1 4 [ ( 1) 3 / 2] 1(2 ) (4 )1

8 (3 ) 1 (3 ) 1 9 (3 ) 1
s s

n

n
W S S W

E
W W W               

 (59) 

 
Table 2 – Mass spectrum of charmonium with the orbital exitations. Experimental data from Ref [2]. 
 

 
 

1
1

S
lJ  

1
1

S
lJ  

0S
lJ  

l=1 

2 3| (0) |

c

s

c

h

h

E GeV

GeV

GeV

M

GeV

f GeV

 

0.3013

0.923955

0.808694

1.14386

1.45188

3.4955

0.116538

0.632513

 

0.2981

0.960388

0.613677

0.618518

1.48592

3.54033

0.0325412

0.332113

 

0.2978

0.945799

0.230383

0.276542

1.48936

3.5266

0.00557

0.13763

 

l=2 

2 3| (0) |

c

s

c

h

h

E GeV

GeV

GeV

M

GeV

f GeV

 

0.2987

1.2229

0.612313

0.595536

1.53846

3.81728

0.1165385

0.632505

 

0.2944

1.22267

0.595989

0.560571

1.5278

3.8145

0.025338

0.282333

 

0.2936

1.21638

1.39076

5.59744

1.5371

3.81107

1.34144

2.05519
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Table 3 – Mass spectrum of bottomy with the orbital exitations. Experimental data from Ref [2]. 
 

 
 1

1

J l

S
 

1

J l

S
 

1

1

J l

S
 

0

J l

S
 

l=1 

2 3| (0) |

s

c

bc

E GeV

GeV

GeV

M

GeV

f GeV

 

0.1944

0.635856

0.628027

0.985258

4.7567

9.87978

0.0514891

0.250077

 

0.1943

0.6479

0.780369

1.36504

4.76124

9.89209

0.09099

0.332242

 

0.1943

0.669121

0.312187

0.49

4.76007

9.91324

0.002881

0.186755

 

0.1946

0.657241

0.0915

0.273495

4.76134

9.90144

0.03731

0.21496

 

l=2 

2 3| (0) |

s

c

bc

E GeV

GeV

GeV

M

GeV

f GeV

 

0.1939

0.906587

0.184697

0.327369

4.79492

10.153

0.000194

0.015147

 

0.1939

0.911645

0.177198

0.321223

4.79433

10.158

0.0089142

0.102619

 

0.1939

0.916257

0.169101

0.315

4.7926

10.1625

0.000156

0.0136138

 

0.1939

0.911824

0.0634526

0.2129

4.7967

10.1583

0.0000124

0.0038378

 

 
In this case, the oscillator frequency is determined from the following equation: 
 

2 2 2
3 3 12 1

2 2
1 1

4

1

21 2
1

16 (2 ) (2 1) (3 )(2 1) ( 1) 4 (4 )
43 (2 ) (2 )(2 1)(1 ) (2 1)(1 )

1 1

16 [ ( 1 3 / 2)] (2 1) (1 )
,

9 (2 ) (2 1)(1 )
1

s

s s

W WW W
n n

W W

S S W W
n

W

                  (60) 

 
where the following notation is used 

1j jW W , j = 1, 2, 3 and s: using (59)  
from (37) and (38) we determine the meson  
mass and the constituent quarks mass, and  
the numerical results are shown in Table 3. 

 
 
 

3 Determination of the width of the 
radiative decay 

Now we proceed to the determination of the 
radiative decay width or E1 transition. The matrix 
elements of the E1 transition from the state ( 2 1 , ,sn J i )  
to the state ( '2 1 ' , ,sn J f ) is written as follows: 

 

' ,,

' 1 ' 1
( ) (2 1)(2 ' 1)(2 1)(2 ' 1) ,

' 0 0 0 \ 1 ' Q i fs s

J J l l l s J
M i f k J J l l e I

M M J l
    (61) 
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where the usual notation in brackets is: 3j is the 
symbol, Qe  is the quark charge, and fiI ,   is the 
radial matrix element of the fi  transition: 
 

)(*
''

0

2
, rrrdrI nllnfi    (62) 

 
where fi,  is the radial wave function of the 
initial and the final state. Then the radiative decay 
width is determined as follows: 

 
2

3 2
,

4
( ) (2 ' 1) | |

3
em Q E

if i f

e
i f J S k I    (63) 

where k is the photon momentum and it is equal to 
 

2 2

2
i f

i

m m
k

m
    (64) 

 
and im , fm  is the mass of the initial and the final 

state. The statistical factor E
fi

E
if SS  is: 

 
 
Table 4 – Mass spectrum of mesons consisting of b and c quarks with radial excitations. Experimental data from 

Ref [2]. 
 
  сс  bb  bс  

S=0 

exp

2 2| (0) |

s

c

b

our

E GeV

GeV
GeV

GeV

M MeV

M MeV

GeV
f GeV

 

0.2745

0.939195

0.504507

0.61426

1.79312

3.6389

3638.9 1.3

0.0409795

0.367611

 

0.19027

0.704855

0.45040495

0.913661

5.115

9.99276

0.161118

0.439865

 

0.22974

0.79797

0.537141

0.732053

2.01377

4.841

0.683353

0.0649499

0.33772

 

S=1 

exp

2 3

exp

| (0) |

s

c

b

our

our

E

GeV
GeV
GeV

M MeV
M MeV

GeV
f GeV

keV
keV

 

0.27479

1.01391

0.644051

0.629255

1.7888

3.71148

3686.109 0.012

0.025839

0.289038

0.691849

2.35 0.04

 

0.18989

0.728737

0.452765

0.905397

5.1501

10.0233

10.02326 0.0031

0.15568

0.43172

0.260597

0.612 0.011

 

0.22996

0.836904

0.571577

0.73425

2.03489

4.896

6.88157

0.0604622

0.324705

 

 
Table 5 – The radiative decay width results 
 

Transition 
fi  

k 
MeV 1

ifI

GeV
 ( )our i f

keV
 exp ( )i f

keV
 

/
/
/

2

1

0

J
J
J

с

с

с
 

376.3

416.06

429.12

 

2.33

1.73

2.18

 

139.312

310.3

450.5

 295.84

500
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2
1

1
3

1
1

1
3

0
1

1
3

11
11

11

PD
PD
PD

 

308.22

266.90

253.13

 

1.78

3.274

2.751

 

267.92

146.9

3.54

 

299

99

3.88

 

2

1

0

с

с

с

 

410.57

422.366

442.592

 

1.422

1.57

0.6644

 

16.81

66.9

22.97

  

2
1

1
3

1
1

1
3

0
1

1
3

11
11

11

PD
PD
PD

 
269.544

257.56

236.929

 

0.1526

0.135

0.4988

 

0.33

0.06

0.024

 
 

 
 

1 '
max( , ')

;
E

if

J J
S l l

l s l
               (65) 

 
 

Thus, it is necessary to calculate the transition 
of the matrix element which is presented in (61). 
The numerical results of the decay width are 
shown in Table 5. 

 
Conclusions 
 
Based on these results we conclude: 
In our approach, constituent quark masses are 

not free parameters, are determined for each 
quarkonium separately and differ from the mass of 
a free state, i.e., from the valence quark masses. In 
this case, the constant s  of the strong interaction 
differents from each other for meson. Free 
parameter in the our approach is the string tension 
σ and for quarkonium consisting of c quarks is σ = 
19.5 GeV 2 and for bottomonium consisting of b is 
σ = 15.3 GeV 2. 

The mass and wave functions of the mesons 
are determined via the eigenvalues of 
nonrelativistic Hamiltonian in which the kinetic 
energy term is defined by the constituent mass of 
the bound state forming and potential energy term 
is determined by the contributions of every 
possible type of Feynman diagrams with an 
exchange of gauge field. In this work, loop 
corrections to the potential interaction are not 
taken into account and this deserves further study. 

In the framework of our approach the mass 
splitting between the singlet and triplet states is  
 
 
 

determined and the radiative decay widths of the 
cc , bb  and bc  systems are calculated. 
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