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A shadows from the static black hole mimickers

Abstract. In this work, we study shadows from the naked singularity spacetime. The most analytical solu-
tions of black hole shadows only investigated the case that the geodesic equations for photons can separate 
variables. We review the spherical null naked singularity metric and this spherically symmetric naked 
singularity spacetime metric is the solution of Einstein equations with an anisotropic fluid source which has 
no photon sphere. We also review a static, axially-symmetric singular solution of the vacuum Einstein’s 
equations without an event horizon which is can be used to describe the exterior gravitational field of a mass 
distribution with quadrupole moment. Moreover, the corresponding spacetime is characterized by the pres-
ence of naked singularities. It is theoretically known that not only a black hole can cast shadow, but other 
compact objects such as naked singularities, gravastar or boson stars can also cast shadows. We present the 
analytical calculation of shadows for both naked singularities spacetime and compare with the shadow of 
Schwarzschild static black hole, we show that this can serve as a black hole mimicker.
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A shadows from the static black hole mimickers 
 

Abstract. In this work, we study shadows from the naked singularity spacetime. The most analytical 
solutions of black hole shadows only investigated the case that the geodesic equations for photons can separate 
variables. We review the spherical null naked singularity metric and this spherically symmetric naked 
singularity spacetime metric is the solution of Einstein equations with an anisotropic fluid source which has 
no photon sphere. We also review a static, axially-symmetric singular solution of the vacuum Einstein’s 
equations without an event horizon which is can be used to describe the exterior gravitational field of a mass 
distribution with quadrupole moment. Moreover, the corresponding spacetime is characterized by the presence 
of naked singularities. It is theoretically known that not only a black hole can cast shadow, but other compact 
objects such as naked singularities, gravastar or boson stars can also cast shadows. We present the analytical 
calculation of shadows for both naked singularities spacetime and compare with the shadow of Schwarzschild 
static black hole, we show that this can serve as a black hole mimicker. 

Keywords: compact object, naked singularity, shadow. 
 

 
 
 
Introduction 
 
By the Event Horizon Telescope (EHT) 

collaboration have unveiled the first image of the 
supermassive black hole shadow at the centre of our 
own Milky Way galaxy [1]. The Event Horizon 
Telescope (EHT) has mapped the first image of a 
black hole at the centre of the more distant Messier 
87 galaxy in 2019 [2]. However, the images of two 
black holes similar, even they from the two 
completely different types of galaxies and two very 
different black hole masses. These results allows us 
to tests and verify of gravity theories and 
corresponding black hole solutions near a regime of 
the gravitational field for which the validity of 
General Relativity (GR). Therefore, it is important to 
consider any theory or calculation that satisfies the 
observational results in order to understand the nature 
of the geometry in the vicinity of an astrophysical 
black hole candidate and to test the validity of black 
hole hypotheses.  

Black hole mimickers are possible alternatives 
for black holes, they would look observationally 
almost like black holes but would have no horizon. 

The properties in the near-horizon region where 
gravity is strong can be quite different for both type 
of objects, but at infinity it could be difficult to 
discern black holes from their mimickers.  

In [3] it was provide a review of the current state 
of the research of the black hole (BH) shadow, 
focusing on analytical studies (see [4–7]. A black 
hole captures all light falling onto it and it is not 
possible to obtain a direct image of them, an observer 
will see a dark spot in the sky where the BH is 
supposed to be located. Due to the strong bending of 
light rays by the Black Hole gravity, both the size and 
the shape of this spot are different from what we 
naively expect on the basis of Euclidean geometry 
from looking at a non-gravitating black ball. Also, the 
authors [3] tried to give a complete list that have 
historically been used to refer to the visual 
appearance of a black hole and related concepts and 
they noted that despite the different names and 
different physical formulation of the problem, all 
these concepts are strongly intertwined. The word 
‘shadow’ in different languages has several 
meanings. In the case of the BH shadow, it can be 
understood as a dark silhouette of the BH against a 
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bright background which, however, is strongly 
influenced by the gravitational bending of light.  

In [8], the authors construct a space-time 
configuration that has a central naked singularity, but 
without photon sphere, and it can give both a shadow 
and a negative perihelion precession. Their results 
imply that if the presence of a shadow and positive 
perihelion 2 precession implies either a black hole or 
a naked singularity, the presence of a shadow and 
negative perihelion precession simultaneously would 
only imply a naked singularity.  

This work is organized as follows. In Sec.II we 
review the metric of null naked singularity spacetime 
which is the solution of Einstein’s field equations 
with an anisotropic fluid source, we calculate the 
shadows from this spacetime in section III and using 
the same procedure, in section IV we investigate the 
shadows in the axisymmetric spacetime. Finally, Sec. 
V contains a summary of our results. 

 

Spherical symmetric null naked singularity 
 
There has been a significant amount of work 

regarding the singular spacetimes and a lot of 
literature where timelike, lightlike geodesics around 
the black hole and naked singularity are investigated. 
Generally, shadow is considered to be formed due to 
the existence of a photon sphere outside the event 
horizon of a black hole. 

The line element representation for null naked 
singularity given by [9], 

 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2
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where M is the Arnowitt-Deser-Misner (ADM) mass 
of the above spacetime. The expression 

of the Kretschmann scalar and Ricci scalar for 
this spacetime are: 
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From the above expressions of the Kretschmann 

scalar and Ricci scalar it can be seen that the 
spacetime has a strong curvature singularity at the 
center r = 0. No null surfaces such as an event horizon 
exist around the singularity in this spacetime. 

This metric this is the solution of Einstein’s field 
equations with an anisotropic fluid source The 
energy-momentum tensor for anisotropic fluid given 
as 
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The solutions of EFE for the energy density and 

pressures as: 
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and it is also shown that this metric satisfies all 
energy conditions, i.e. strong, weak and null energy 
conditions [6]; The anisotropy in the pressures is: 
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The equation of state (α) for an anisotropic fluid 

can be written as: 
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from the equations eq.(5- 7) the equation of state for 
this spacetime as 
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where if r tends to zero, equation of state becomes 
−1/3; if r tends to infinity, equation of state becomes 
+1/3. 
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From the above equation (1) the expansion of 
component of metric tensor can be written as 

 

 ,321
2












−






+−−≈ 

r
M

r
Mgtt             (11) 

 
it is clear that in the large r limit, this metric is 
symptotically flat. Even though the metric resembles 
the Schwarzschild metric at a large distance, near the 
singularity, the causal structure of this spacetime 
becomes different from the causal structure of 
Schwarzschild spacetime. 

 
Shadows of null naked singularity 
 
Even though the metric resembles the 

Schwarzschild metric at a large distance, near the 
singularity, the causal structure of this spacetime 
becomes different from the causal structure of 
Schwarzschild spacetime. The most analytical 
solutions of black hole shadows only investigated the 
case that the geodesic equations for photons can 
separate variables. For example, In Kerr black hole 
space-time for the null geodesics has a third motion 
of constant, namely the Carter constant which is can 
be found by the calculation of HamiltonJacobi 
equation, except for the energy E and the z-
component of the angular momentum Lz and the 
photon motion system is integrable.[11]. 

Let’s rewrite the line element 1 in this form: 
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The Hamilton of a photon is given by 
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The photon motions can be obtained from the 

Hamiltom equation 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 is the four-momentum of the photon, 

and λ is the affine parameter.  
In additional, due to symmetries of the metric one 

can introduce two integrals of motion, corresponding 
to cyclic coordinates t and φ, i.e., the conserved 
quantities of energy and angular momentum, 
respectively. 
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From the Hamiltonian 14 with the eq.16 we can 

reduce 
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Because of the spherical symmetry, we can 

choose the orbit of the photon in the equatorial plane, 
which means𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋

2
,𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃 = 0. Also, the orbit equation 

for lightlike geodesics is dr/dφ, then, using eq.16 and 
eq.17 the orbit equation becomes 
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Figure 1 − Formation of a shadow in the case  

of a null naked singularity 
 

 
We can see that eq.(18) is the same form as an 

energy conservation law in one-dimensional classical 
mechanics (dr/dφ)2 + Veff (r) = 0, where the effective 
potential depends on the impact parameter b = L/E. 

According to (18), we can rewrite the effective 
potential for the metric (1) 
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The unstable circular orbits of lightlike geodesics 

can be found when the equations for effective 
potential 
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From the above equation, one can determine the 

impact parameter b with a minimum radius of 
circular orbit 
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Let us also introduce the function 
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it is clear that the impact parameter and the function 
h(r) are related by b = h(R), then the equation 18 can 
be rewrite as a following 
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Assume that a static observer at radius coordinate 

rO sends light rays into the past. 
Then, the angle α between such a light ray and the 

radial direction is can be calculated by 
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from the eq.(23) and eq.(24) we obtain 
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By elementary trigonometry, we get 
 

 ,
)(
)(sin 2

0

2
2

rh
Rh

=α                      (26) 

or 

 .
)(
)(sin 2

0

2
2

mr
mR

+
+

=α                    (27) 

 
From the condition in eq. (20), in the null naked 

singularity spacetime, the minimum turning point 
radius (rtp) of the photon is rtp = R = 0, then for an 
observer the angular size of the shadow is 
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Then for an observer at a large distance the 

angular size 

 ,
0r

m
≈α                             (29) 

 
Synge calculated the shadow in the 

Schwarzschild spacetime as [8] 
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For large distances we have: 
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Shadow in q-metric 
In spherical coordinates, the q− metric can be 

written in a compact and simple form as 
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This metric is the simplest static vacuum 

solutions of Einstein’s filed equations with 
quadrupole investigated in [13] and the geometric 
properties of the metric analyzed in detail. In the 
literature, this metric is known as the Zipoy– 
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Voorhees metric, δ - metric, γ - metric and q-metric 
[14–21]. Interior solutions of Einstein’s field 
equations was found in [22] and the new generating 
method with the perfect fluid source presented in [23] 
which includes the multipole moments. Consider that 
the orbit of the photon in the equatorial plane. The 
first integral of timelike geodesic equation is 
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αβ xxg                             (34) 

Hence 
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We have used the expression for the energy E and 

the angular moment L which are constants of motion 
that associated with the Killing vector fields ξt = ∂t 
and ξφ = ∂φ, respectively. 

Consider the the boundary curve of the shadow 
corresponds to past-oriented light rays that 
asymptotically approach one of the unstable circular 
light orbits at radius rph. Therefore we have to 
consider the limit R → rph in (26) for getting the 
angular radius αsh of the shadow 

by the same procedure as in section III, 
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If we consider that the parameter q≠0, then the 

rph is 
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Figure 2 − Angular size of shadows in a different scenarios  
as a function of sin 𝛼𝛼𝛼𝛼𝑠𝑠𝑠𝑠ℎ2 , for Schwarzschild (blue), q − metric 

(red) and for null naked singularity (green) 
 
The critical value bcr of the impact parameter is 

connected with rph by bcr = h(rph) 
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the final calculation of angular radius of the shadow 
in the q−metric space-time is 
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It is clear that when q = 0 it is reduce to the radius 

of photon sphere in the Schwarzschild spacetime, i.e., 
rph = 3m and, after substitution into (36) we can find 
the angular radius αsh of the shadow in the 
Schwarzschild spacetime. 

In figure 2 shown the angular size of shadows in 
a different scenarios. For the large observer at r0 they 
have not same angular size. The near the naked 
singularity apacetime, the size of shadows are quite 
different and the the size of shadow from the null 
naked singularity has a small angular size. At the 
large distance, Eq.(40) becomes 

 

 ( ) ( ) .2321 2
3

2
1

0

qq
sh qq

r
m +−− ++=α          (40) 

  
If q = 0, for large distances the shadow can be 

approximated and the expression reduce to the 
similar angular size of shadow in Schwarzschild 

spacetime as 
0

33
r
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Conclusions and remarks 
 
In this work, we reviewed the null naked 

singularity solution of Einstein’s filed equations that 
absence of photon sphere and calculated shadow size 
for a static observer. The angular size of the shadow 
in any spherically symmetric and static metric, for 
any position r0 of a static observer, can be calculated 
in the simple manner. 

We calculated the size of shadows in Null naked 
singularity and static q-metric spacetime. The near 
the naked singularity apacetime, a size of shadows 
are quite different from the Schwarzschild spacetime, 
the null naked singularity spacetime has a shadow 
with small angular size. For the q-metric spacetime, 
the size of the shadow directly depends the value of 
quadrupole parameter. Near the naked singularity,  
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the quantum gravity effects should be dominant, and 
therefore, such quantum gravity effects might be 
manifested or can be observed in the shadow cast by 
a naked singularity. This will require a detailed 
analysis of the various features encoded in such 
shadows. 

 For the large distance observer at r0 the null 
naked singularity and q-metric spacetime 
asymptotically resembles the Schwarzschild 
spacetime. As a result, the null naked singularity and 
static q-metric spacetime can be thought of as a 
Schwarzschild black hole mimickers.
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