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A novel numerical implementation for solving problem
for loaded depcag

Abstract. In this work, we propose a new computational approach is implemented to solve a two-point
BVP for a loaded differential equation with piecewise constant argument of generalized type (DEPCAGQG)
based on the Dzhumabaev parameterization method. In this method, as parameters, we take the values
of the desired solution at the partition points which are chosen taking into account the specifics of the
equation. The problem under consideration reduces to an equivalent parametric problem for ordinary
differential equations. A solution to this problem, which in turn are found from a system of linear algebraic
equations. The found values of the parameters are used to determine the values of the unknown function
at the remaining points of the interval by solving auxiliary initial-value problems. We develop a novel
numerical implementation for solving the considered a two-point BVP for loaded DEPCAG and provide
two examples illustrating its application, where Mathcad software will be used for the calculation.
Keywords: piecewise-constant argument of generalized type, loadings, two-point boundary-value problem,
Dzhumabaev parametrization method, numerical solution.
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1 Introduction and preliminaries

The study of loaded differential equations is of
interest both from the practical and theoretical points
of view, in mathematical modeling and in general
mathematics itself. In [1-9], various boundary-value
problems for loaded differential equations are studied
and solved by different methods.

Differential equations with piecewise constant
argument of generalized type, introduced by M.
Akhmet [10], arise in modeling of diverse
phenomena and are widely used in applications such
as neural networks, hybrid systems, dynamic systems
with discontinuities, etc. The theory of such
equations has been extensively developed; see, for
instance, [10-15]. However, there still remain open
questions regarding boundary-value problems for
such equations on a finite interval.

The parametrization method proposed by
professor D. Dzhumabaev [16, 17] is an effective
method of qualitative investigate and numerical
solving BVPs for a wide class of differential and
integro-differential equations.

© 2022 al-Farabi Kazakh National University

This paper is concerned with solving numerically
a two-point BVP for a system of loaded DEPCAG by
the modification of Dzhumabaev’s parametrization
method.

We consider the following a two-point BVP for
the system of loaded DEPCAG:

x(t) = Ag()x + A; ()x(61) +
+K@®)x(y(©) + (), t € (0, T), (1)

Byx(0) + Cox(T) =d,x € R™,d € R", (2)

where (n X n)-matrices Ay(t), A;(t), and K(t) are
continuous on [0, T], the n-vector-function f(t) is
piecewise continuous on [0,T] with the possible
discontinuity of the first kind at the point t = 64; B
and C, are constant (n X n)-matrices. Here 0 = 6y <
0. <0, =T,|x|l = irg%lxil.

The argument y(t) is a step function defined as
y(@) =& if t € [6o,61); 60 <o < 64,
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and
y(t) = fl ift € [91, 92), 91 < 61 < 02.

We will call a function x(t) a solution to problem
(1), (2)if:

(1) it is continuous on [0, T and differentiable on
(0, T) with the possible exception of the points
0, and 8, at which the one-sided derivatives exist;

(i1) it satisfies (1) on each interval (6;_4,6;), [ =
1,2 ; at the points 8, and 6;, Eq. (1) is satisfied by
the right-hand derivatives of x(t);

(iii) it satisfies the boundary condition (2).

2 A numerical algorithm for solving problem
1, 2)

We divide the interval [0, T] as follows: [0,T) =
Urziltr—1,ty). Here tg = 6g, t; = &g, t, = 0y, t3 =
fl’ and t4 = 92 =T.

Let C([0,T], 8, R*™) denote the space of function
quadruples x[t] = (x1(t), x5 (1), x3(t), x4 (),
whose  components  x,:[t._q,t,) > R®  are
continuous on [t,_q1,t.) and have finite limits
. litm_ o x,(t) for all r = 1,4. The space is equipped
with the norm [|x[-]||, = max sup [|x,.(®)]l.

r=1, tr—lrtr)

The restrictions of x(t) to the partition
subintervals, denoted by x,-(t) (x,.(t) = x(t) fort €
[t_1,tr), T = 1,4), satisfy the following multipoint
boundary-value problem

d

% = Ao(Ox; + K(0)x,(t1) +
+A1()x3(t2) + f1(), t € [to, t1), ®)

d_xtz = Ay (O)x, + K(O)x,(t,) +

+A,(0)x3(tz) + f1(), t € [ty,L,), 4)

dx
T = Ao + K(0xy(t3) +

+A4;(0)x3(t2) + f2(), t € [t, t3), &)

% = Ao(t)xy + K(t)x4(t3) +
+A4;(O)x3(t;) + fo(1), t € [t3,T), (6)

Byx1(0) + Gy tli%rlo x,(t) = d, (7
t_l)itII‘Jn_oxp(t) =xp41(t,),p =13 (8)
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Here f;(t) = f(t) if t € [ty, t,) and f,(t) =
f(t)ift € [ty ty).

Applying the substitution x,(t) = w,.(t) + u,- on
each r-th subinterval, with p, = x,.(t,_,),r = 1,4,
we pass to the boundary-value problem with
parameters U,:

d
— = Ao + ) + KO +
+A;(Ous + f1(8), t € [to, t1), ©))
wy(tg) =0, (10)
d
2= 4Oz + 1) + KOz +
+A,(Ops + f1(t), t € [ty,t3), (11)
wy(ty) = 0, (12)
d
=2 = Ao(©ws + ts) + K(Os +
+A;(Ouz + fo(t), t € [ty, t3), (13)
wa(ty) =0, (14)
d
—E = 40O + ) + KOy +
+A;(Ouz + f,(t), t € [t3,T), (15)
wy(t3) =0, (16)

Bouy + Copts + Co lim wy(t) =d, (17)

(18)

Uy + t—ljfm—o wy(t) = fp+1, 0 = 1,3.
P

A pair (w*[t],u*), whose components are
we[t] = (wi (D), w3(t), w3 (1), wi(t)) €
C([0,T],6,R*™) and pu* = (u3, u3, 43, 13) € R*™, is
called a solution to problem (9)-(18) if the functions
w; (t),r = 1,4, are continuously differentiable on
[t,_1,t-) and satisfy equations (9), (11), (13), (15)
with respective initial conditions and additional
conditions (17), (18) with u; = uj, j = 1,4.

Let us show the equivalence between problems
(1), (2) and (9)-(18). If a function x*(t) solves
problem (1), (2), then the pair (W*[t], u*), where
wrt] = (x" (&) — x"(to), x"(8) — x"(t1), x"(¢) —
x"(t2), x"(t) — x*(t3)) and pr=
(x*(tg), x*(t1), x*(t2),x*(t3)), is a solution of
problem (9)-(15). Conversely, if a pair (W[t], i) with
elements wit] = (Wi (t), Wy (t), w5 (t), w,(t)) €
C([0,T],6,R*™) and @ = (7, iy, s, fls) € R*™, is a
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solution of (9)-(18), then the function ¥(t) defined as
() = W, (t) + i, t € [ty_1,t,),r =14, and

x(T) = , liTrrl0 Wins1(t) + fineq, Will be a solution of

the original problem (1), (2).

Let X,.(t) be a fundamental matrix of the
equationz—f = Ay(t)x on[t,_q,t.],r = 1,4. Then we

can represent the solutions of initial-value problems
(9)-(16) in the following form:

t t
wi(®) = X, (0) j X7 (D) Ao (D dr g + X, (©) f X K @) de iy +

to to
+X,(0) [} X7 @A @ dr s + X, (0 [ XTI @AET €€ [k, 1), (19)
t t
W = X0 [ X7 @Ao@deps + %0 [ X7 @K @y +
+X,(0) [ X3 @A @ dr ps + X0 [ X7 @ f,@dr ¢ € [, 1), (20)
ws(© = X0 | X5 @Ao@ddrps + K50 [ X5 @K @y +
ty tz
+X3(t) fttz X3 (DAL (D)dT s + X3(8) fttz X3 (D f2(D)dr, t € [ty t3), 21)
wa(©) = X (©) | X7 @A@drps + X4 [ X @K@y +
t3 t3
+Xa(0) [ X @A @7 s + Xu(©) [ X @ D dr ¢ € [t5,T). (22)

If we substitute the limit values for w,(t), r =
1,4, present in conditions (17) and (18), by their
corresponding expressions found from (19)-(22), we
arrive at the system of linear algebraic equations in
parameters fi,., 7 = 1,4:

Bouy + Copg + Coays(Ag, Ty + Coas (K, THuy +
+Coas(A1, Tz = d — Coas(f2, T), (23)

w1+ ag (Ao, tpy + a1 (K, t)p, + aq (A, t)pus —
—‘le = _al(fll tl)! (24)

U + ax(Ag, t)uy + ay (K, to)u, + az(Aq, ty)us —
—uz = —a,(fi, t), (25)

us + az(Ao, tz)uz + az(K, t3)uy + az(Aq, t3)us —
—uy = —az(f, t3). (26)
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Here by a,.(P,t) we denote the unique solutions
of the auxiliary initial-value problems

dz
i Ag(t)z + P(t),t € [t,_q,t)),

z(t,_1) =0,r=14.

Let us rewrite system (23)-(26) in the matrix
form:

Q(6,)u = —F(61), 4 € R*", (27)

where
F (6 1)= (—d
+ Coas(f2, T), ay (f1, t1), ax (f1, £2), a3 (fo, £3))

and
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Q(91) =

B, 0
I'+ay(4p,t1) a;(K,ty) —1
- 0 I+ ay(4y,t) + a,(K, t,)
0 0

here / and O are the identity matrix and the zero
matrix, respectively, both of dimension x.

It may be verified without difficulty that the
solvability of problem (1), (2) and that of system (27)
are equivalent. The solution of system (27) is a vector
wt = (Ui, w5, 15, 1) € R*, whose components
are ui = x*(t,_1),7 = 1,4. To find the values of the
solution to problem (1),(2) at the remaining points of
[0,T], we plug the values pu; into equations
(3)-(6) and solve them as ordinary differential
equations subject to the initial conditions

x*(tr—1) = pir-

Based on the above findings, we develop the
following numerical algorithm for solving the
boundary-value problem (1),(2).

1. Divide intervals [t,_q,t,.], 7 = 1,4, into M,
parts. Find the approximate values of the coefficients
and the right-hand side of (27) by solving the
following matrix and vector initial-value problems:

L — Aoz + F1(8), 2(tg) = 0, t € [to, t,);

dt
d
2= Az + f1(8), 2(t,) = 0, ¢ € [t1,85);

L = 40Oz + f,(8). 2(t;) = 0. t € [t5,15);

L= 40Oz + f,(8). 2(t;) = 0. t € [t5,1,);

d

d_i = Ao(t)z + Ao(t)g Z(tT—l) = 07
t € [tr_1,tp), 7 =1,4;

dz

— =A@z + 4,©), 2(t,—,) =0,

te [tT—lJ tr), r= 1,4 >

d
== Az + K (), 2(tr—1) = 0, ¢ € [tr_y, t;),
r=14.

2. Construct the linear in parameters

Q*(el).u* = _Ek(el)ﬂ /'l—* € R4n . (28)
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I +az(Ag, tz) + az(Aq, t3)

Coas(A;,T) Coll + a,(Ay,T) + ay(K,T)]
a;(4y,t1) 0
a’Z (All tZ) - I 0

a3(K; t3) -1

Solve system (28) to find u*. As noted above, the
components of W=(ui, U3, U3, 1a) are
wy = x*(ty_1),r =14.

3. Solve the following initial-value problems

dz
pri Ag(Dz + K(t)u; + A (Dus +

+f1(), z(ty) = pi, t € [to, t1];

dz
pri Az + K(Ous + A (Dus +
+f1(6),z(t1) = p3, t € [ty, t;];

dz

i Az + KM®py + A1 (Ops +
+12(0), z(t;) = p3, t € [ty, t3];

dz i .

q Ag()z + K(t)uy + A1 (Dus +

+12(8), z(t3) = py, t € [t3,t,]

and determine the values of the solution z*(t) at the
remaining points of the partition subintervals.

3 Examples

Example 1. Let us consider the following
problem

o0 el S

+ (41} £2 t_ 3) x(D+f(),te(02), (29
(‘11 g) X0+ (g _94) *) = (14867)’
x € RZ. (30)

Here if t € (0,1):y(t) =&, = %,

3
310 5¢% 4+ 3t2 4 10t + 2

_| s .
o 3t2 — 263 — 44 L2 )
4

2
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54 A novel numerical implementation for solving problem for loaded depcag
ifte(1,2):y(t) =& =3, To solve problem (29), (30) numerically, we
2 implement the proposed algorithm. The interval
503 St4 4 3¢2 4 10t — 38 [0, 2] is partitioned into the subintervals [ ] [ 1]
fo=|\° 31t . [1 ] [ ] We take the step size h = 0.05 to
3t2 —26t3 —t* +— + =
numerically solve the auxiliary initial-value
problems on the partition subintervals (step 1 of the
The exact solution of problem (29), (30) is algorithm).
x*(t) = ( t? _13), Consider the system (28), where
| 5 0 ~14 SE2596 -10.74399 -3R 057058 —§.66TORD 548 417452
1 0 b 8 ~ETOTINT MTTIHIG S35 S000TORS 548953587
Q85557 =1.7H8367 OSSO0 1749837 —1308TH  135ETES f o -5 334808
QTOEY: O8FITRT  LOTIMM -NIITG62 24551B6 -1 576417 0 LTa58%
240 0 0 065277 0307998 =248031 1374689 0 AL -4 340978
o 0 LA8459% =149783% 13958435 =1 568429 0 o =1 345375
".‘ 0 0 o] =Loeill 0532068 -DEIVMM 2 S1E06S T L5047
¥ 0 i <) §BO1OGE 000804 4384704 0 10dER) B3 377406

Solving the system (28), we find (step 2 of the

algorithm):
1.750002872

(:0.874993786)’

( 1.999989979 )
—0.000015784/"

8.249993363)

2.374987821
The results of all calculations are obtained using
Mathcad software.

2.999981352
0.999992433

I3

*
2

=

*
3

U

i = (

The proximity of the exact solution to the
numerical solutions satisfies the estimate (step 3 of
the algorithm).

If h = 0.05, then
*(tr) — X(tg)|] < 0.00002.
krgngollx (&) — 2 (&l

If h = 0.025, then

o 0_XIIx (tx) — X(t)|| < 0.000001.

If h = 0.0125, then

*(t,) — X(t 0.000000009.
kgl%”x (tr) — X(t)ll <

Example 2. Let us consider the following
problem

dx [t 1 t? 1t 2
o2t 263 |x+(0 5 5t |x(y(®)+
t2 0 4t 6 t+2 3t
4t2 6 0 )
+| 5t t-3 8)x(3)+fO,te O, 31
1 0 t
2 0 6 1 5 11 —109
(4 2 1>x(0)+<0 —4 2>x(1)=<— 5>,xeR3. (32)
4 5 -7 6 8 9 59

Here
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/ 27 53 _ \
y(t) =& =1,f(t) = | 183 - 5t4 2t5 + 13t + 425 4212
362 — 1163 + 2 ¢ +ﬂ
64
53 g \
8 64
V(t)=f1=%.f(t)= 18t3—5t4—21:5+13t2+§1t+4:9 2
3t2—11t3+@t—@ /
The exact solution of problem (31), (32) is —1.249999988
7t —3 0.578125004
x*(t) = 5t3+ 2t | —8.937500018
t?—9
To solve problem (31), (32) numerically, we
implement the proposed algorithm. The interval 0.499999994
[0,1] is partitioned into the subintervals [0, ﬂ, Hs = 1;’?::33:;;7
1,1 s l,i , 3,1 . We take the step size h = .
[ p
4’20 1274) la
0.025 to numerically solve the auxiliary initial-
value problems on the partition subintervals (step 1 y g gggg?ggg%
of the algorithm). Ha =
—8.437499952

Solving the system (28), we find (step 2 of the
algorithm):
Ui = (—0.000000021 ,

2.999999976)
9.000000037

The results of calculations, obtained using
Mathcad software, are presented in Table 1 (step 3
of the algorithm).

Table 1 — The proximity of the exact solution x*(t) to the numerical solutions (t) of the problem (31), (32)

k ty lo¢7 () — % ()| |23 (i) — %5 (8| |2¢3 (k) — %3 (i)
0 0 0.2422E-7 0.2137E-7 0.3679E-7
1 0.025 0.2275E-7 0.1788E-7 0.3500E-7
2 0.05 0.2134E-7 0.1458E-7 0.3322E-7
3 0.075 0.2000E-7 0.1145E-7 0.3146E-7
4 0.1 0.1873E-7 0.0853E-7 0.2969E-7
5 0.125 0.1750E-7 0.0581E-7 0.2790E-7
6 0.15 0.1632E-7 0.0331E-7 0.2607E-7
7 0.175 0.1516E-7 0.0105E-7 0.2421E-7
8 0.2 0.1402E-7 0.0097E-7 0.2230E-7
9 0.225 0.1287E-7 0.0271E-7 0.2034E-7
10 0.25 0.1171E-7 0.0418E-7 0.1833E-7
11 0.275 0.1052E-7 0.0534E-7 0.1626E-7
12 0.3 0.0927E-7 0.0618E-7 0.1414E-7
13 0.325 0.0794E-7 0.0666E-7 0.1198E-7
14 0.35 0.0650E-7 0.0677E-7 0.0978E-7
15 0.375 0.0493E-7 0.0646E-7 0.0755E-7
16 0.4 0.0319E-7 0.0572E-7 0.0532E-7
17 0.425 0.0126E-7 0.0449E-7 0.0311E-7
18 0.45 0.0092E-7 0.0273E-7 0.0094E-7
19 0.475 0.0338E-7 0.0039E-7 0.0115E-7
20 0.5 0.0617E-7 0.0258E-7 0.0311E-7
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Table continuation

k L3N |7 (i) = %3 (&) 262 (i) = Xp(tx) | |23 (tx) = %3 (t) |
21 0.525 0.0571E-7 0.0476E-7 0.0767E-7
22 0.55 0.0530E-7 0.1191E-7 0.1234E-7
23 0.575 0.0499E-7 0.1884E-7 0.0171E-7
24 0.6 0.0481E-7 0.2550E-7 0.2189E-7
25 0.625 0.0481E-7 0.3185E-7 0.2669E-7
26 0.65 0.0503E-7 0.3785E-7 0.3143E-7
27 0.675 0.0554E-7 0.4342E-7 0.3605E-7
28 0.7 0.0640E-7 0.4849E-7 0.4047E-7
29 0.725 0.0768E-7 0.5298E-7 0.4460E-7
30 0.75 0.0947E-7 0.5678E-7 0.4833E-7
31 0.775 0.1185E-7 0.5977E-7 0.5152E-7
32 0.8 0.1493E-7 0.6181E-7 0.5402E-7
33 0.825 0.1884E-7 0.0627E-7 0.5564E-7
34 0.85 0.2372E-7 0.6226E-7 0.5616E-7
35 0.875 0.2973E-7 0.6022E-7 0.5533E-7
36 0.9 0.3707E-7 0.5628E-7 0.5281E-7
37 0.925 0.4597E-7 0.5009E-7 0.4825E-7
38 0.95 0.5668E-7 0.4119E-7 0.4120E-7
39 0.975 0.6951E-7 0.2907E-7 0.3114E-7
40 1 0.8484E-7 0.1306E-7 0.1744E-7
4 Conclusion 5 Acknowledgement
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