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Thermomagnetic ferroconvection in an anisotropic permeable  
layer exposed to a modulated magnetic field

Abstract. The impact of a sinusoidal mode of magnetic field involving time-dependent on the threshold of 
magnetic smart liquid advection in a saturated Darcy-permeable framework is investigated using a regular 
perturbation technique. Aniso t ropic permeability and thermal anisotropy are used to describe the flow 
through permeable medium. The regular perturbation technique is based on minimum amplitude of time-
fluctuated magnetic field, the threshold condition is computed with regard to correction in a critical Rayleigh 
number and wavenumber. Correction in Rayleigh number is identified by modulating the magnetic field, 
modulation frequency, magnetic parameter, mechanical anisotropy, thermal anisotropy and Vadasz number. 
At intermediate frequency values, the impact of various physical factors is perceived to be noteworthy. It is 
found that by fine tuning the frequency of magnetic field modulation, we can either accelerate or postpone 
the onset of ferroconvection. The most sophisticated scientific application packages, Wolfram Mathematica 
11.3 is used to extract the numerical values as well as plotting graphs. The problem sheds some light on 
convective heat transfer mechanisms in ferromagnetic fluid with time-varying magnetic field.
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Thermomagnetic ferroconvection in an anisotropic permeable layer exposed to a modulated 
magnetic field 

 
 
Abstract. The impact of a sinusoidal mode of magnetic field involving time-dependent on the threshold 

of magnetic smart liquid advection in a saturated Darcy-permeable framework is investigated using a regular 
perturbation technique. Anisotropic permeability and thermal anisotropy are used to describe the flow through 
permeable medium. The regular perturbation technique is based on minimum amplitude of time-fluctuated 
magnetic field, the threshold condition is computed with regard to correction in a critical Rayleigh number and 
wavenumber. Correction in Rayleigh number is identified by modulating the magnetic field, modulation 
frequency, magnetic parameter, mechanical anisotropy, thermal anisotropy and Vadasz number. At 
intermediate frequency values, the impact of various physical factors is perceived to be noteworthy. It is found 
that by fine tuning the frequency of magnetic field modulation, we can either accelerate or postpone the onset 
of ferroconvection. The most sophisticated scientific application packages, Wolfram Mathematica 11.3 is used 
to extract the numerical values as well as plotting graphs. The problem sheds some light on convective heat 
transfer mechanisms in ferromagnetic fluid with time-varying magnetic field. 

Keywords: Magnetic liquid, Anisotropy, Stability, Porous medium. 
 
 
Introduction 
 
A ferrofluid (magnetic nanofluid) is a liquid 

carrier that includes a solution of nanoscopic 
magnetic particles immersed in a surfactant 
coating. In comparison with conventional fluids, 
magnetic nanofluids are responsive to external 
magnetic fields even in the absence of 
gravitational force. Numerous studies on these 
fluids have been undertaken as an outcome of their 
diverse applications in computer disk drives, bio-
medical, magnetic resonance, robotic systems and 
dynamic sound system, to mention a few [1, 2]. In 
order to improve the thermal conductivity of fluids, 
magnetic nanoparticles are suspended in them. 
Depending on the nanoparticle, fluids can often have 
a hundred times greater thermal conductivity than the 
carrier fluids. In this background, this article attempts 
a comprehensive review on magnetic fluid owing to 
its prospective value as a heat transfer phenomenon. 
An initial description of thermomagnetic convection 
was given by Finlayson [3], purely by showing how 

a horizontal surface of magnetic fluid with a variable 
magnetic susceptibility leads to a non-consistent 
force of the magnetic field. Future, many authors 
attracted towards the work of Finlayson and 
investigated the commencement of magnetic fluid 
convection under a variety of handy constraints [4-6]. 
According to recent work performed with the higher 
order Galerkin technique, it is clarified that the MFD 
viscosity plays a role in delaying the advent of 
ferroconvection in a sparsely packed permeable 
medium exposed to varying gravity fields [7].  

In various sectors, such as charges in electrode 
materials and the resonance of a ferromagnetic field, 
modulation (oscillation) of a suitable parameter can 
affect the motion and can result in improved stability. 
Many theoretical and experimental investigation 
dealing with fluctuations in the magnetic field on the 
advection of a magnetic liquid and collision between 
harmonic and subharmonic conditions have been 
carried out by numerous authors [8-11] using the 
Floquet theory. In the articles [12, 13], it is reported 
that the nonzero flow field of the base state is caused 
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by a double vortex reflecting an external magnetic 
field modulated symmetrically by two iron bars 
below and above a ferrofluid layer. The temperature 
distribution through an electrically charged liquid 
with internal heat source and couple stresses exposed 
to magnetic field fluctuation is discussed in detail 
[14]. Recently, a work is carried out on the advent of 
magnetic nanofluid under the influence of fluctuated 
magnetic field ferroconvection in a sparsely arranged 
permeable structure, it is revealed that convection can 
be delayed or advanced by controlling the parameters 
of the study [15]. 

Temperature profile through fluid-saturated 
nanopores has piqued the interest of many 
researchers due to its natural phenomenon and 
diverse applications in science and technology. This 
includes the use of geothermal energy resources, the 
eradication of nuclear excess, aquifers leftover 
removal, drying processes, and so on. Harton, 
Rogers, and Lapwood [16, 17] pioneered work on 
fluid-saturated permeable structures located between 
two identically flat surfaces and heated directly 
beneath, and the overall problem has been termed as 
“Horton-Rogers-Lapwood or Darcy-Benard”. 
Moreover, numerous authors have addressed the 
topic in depth and the growing number of research in 
this area is extensively documented [18, 19]. The 
majority of scientific and experimental research on 
the advection of flow in porous environments has 
focused on isotropic materials. More than that, in 
many real scenarios, the mechanical and thermal 
assets of porous materials are anisotropic, which can 
be seen in several industrial and environmental 
situations as a result of irregular pattern of permeable 
matrix. Anisotropy can also be noticed in synthetic 
porous materials like nanoparticles used in chemical 
manufacturing techniques and coating materials. 

The effect of Vadaz number on convection in a 
Darcy-permeable framework with rotating fluid 
surface is well explained in the articles [20, 21], it is 
noted that, unlike the problem in pure liquids, over 
stable advection in permeable medium at marginal 
stability is not limited to a specific range of Prandtl 
number values. By adopting the assumptions that the 
layer is anisotropic, homogenous, and has an infinite 
horizontal extent, [22] a theoretical examination of 
the thermal gradients in the permeable structure is 
handled. A permeability with anisotropy in thermal 
diffusivity produces two distinct convection cells 

when a symmetry axis is assumed and a (90∘ − 𝜃𝜃𝜃𝜃) 
angle is made against perpendicular motion is 
discussed in detail [23]. In addition, anisotropic 
permeable matrix subjected to inclined layer, time–
periodic temperature/gravity, rotation and double 
diffusivity has been reported in the literatures [25-28] 
respectively. The impact of thermal modulation on 
the advent of the ferroconvection in Darcian 
permeable materials confirms that subcritical point 
exists for balanced temperature fluctuation for 
minimum frequency. Moreover, for unbalanced and 
bottom wall fluctuation only supercritical state 
presents [29].  A weakly nonlinear unsteadiness in a 
rotary permeable anisotropic smart ferrofluid 
medium using Runge–Kutta–Gill numerical 
technique has been carried out in recent years [30]. 

Convection control is a phenomenon that is vital 
and intriguing in a wide range of magnetic fluid 
technologies, as well as conceptually challenging.  
The unamplified Rayleigh-Bénard advection in the 
ferromagnetic liquid has derived a plenty of attention. 
Notwithstanding, substantial attention turned out to 
be devoted to the combined impact of the modulated 
magnetic field and permeable anisotropy layer on the 
advent of ferroconvection. In this paper, the 
presented analysis is with reference to the 
presumption that the modulation dimension is very 
minimal and the convective currents are weak, 
allowing nonlinear effects to be ignored. Thus, 
depending on the frequency of magnetic field 
modulation, the advent of ferroconvection can be 
advanced or delayed in the presence of Darcian-
anisotropic permeable medium. Present work aims to 
provide an introduction to vertical harmonic 
vibrations, magnetic factors, and anisotropy as they 
relate to natural convection. 

 
Mathematical model  
 
Permeable medium is considered, which is bound 

between two plates kept separate by a distance 𝑑𝑑𝑑𝑑 (see 
Fig. 1). In mechanical and thermal aspects, the 
permeable medium is presumed to be closely packed 
and have vertical anisotropy. A vertical downward 
gravity force, as well as a uniform temperature 
difference 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇 between the two surfaces, act on the 
fluid. The reference rectangular coordinate frame's 
origin is at the bottom, with the 𝑧𝑧𝑧𝑧–axis pointing up 
vertically.
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Figure 1 – Physical configuration 

 
 

The magnetic field imposed externally is time-
dependent and is used as 

 
𝐻𝐻𝐻𝐻��⃗ 𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜(1 + 𝜀𝜀𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝜔𝜔 𝑡𝑡𝑡𝑡)𝑘𝑘𝑘𝑘�     (1) 

 
where 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜 is a uniform magnetic field, 𝜀𝜀𝜀𝜀 and 𝜔𝜔𝜔𝜔 are 
modulation amplitude and frequency respectively.  

The equation of continuity is 
 

𝛻𝛻𝛻𝛻 • �⃗�𝑣𝑣𝑣 = 0,                              (2) 
 
The conservation of linear momentum with 

anisotropic inverse permeability 𝐾𝐾𝐾𝐾��⃗ = 𝐾𝐾𝐾𝐾𝐸𝐸𝐸𝐸−1(𝚤𝚤𝚤𝚤̂𝚤𝚤𝚤𝚤̂ + 𝚥𝚥𝚥𝚥̂𝚥𝚥𝚥𝚥̂) +
𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧−1�𝑘𝑘𝑘𝑘�𝑘𝑘𝑘𝑘��, for modified Darcy model is taken in the 
form [3, 25, 28] 

 

𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜 �
1
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕�⃗�𝑣𝑣𝑣
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+
1
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝2

(�⃗�𝑣𝑣𝑣 • 𝛻𝛻𝛻𝛻)�⃗�𝑣𝑣𝑣� = 

= −𝛻𝛻𝛻𝛻𝑝𝑝𝑝𝑝 + 𝜌𝜌𝜌𝜌�⃗�𝑔𝑔𝑔 + 𝛻𝛻𝛻𝛻 • �𝐻𝐻𝐻𝐻��⃗ 𝐵𝐵𝐵𝐵�⃗ � − 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾��⃗ •  �⃗�𝑣𝑣𝑣,           (3) 
 
 

where  �⃗�𝑣𝑣𝑣 is the actual velocity component, 𝜌𝜌𝜌𝜌 is the 
density, 𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜 is the reference density, 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝 is the porosity, 
𝑝𝑝𝑝𝑝 is the pressure, �⃗�𝑔𝑔𝑔 = −𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘� is the acceleration due to 
gravity, 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓 is the viscosity, 𝐻𝐻𝐻𝐻��⃗  is the overall magnetic 
field, 𝐵𝐵𝐵𝐵�⃗  is the magnetic induction.  

We adopted the Oberbeck–Boussinesq 
approximation in the study. For the derivation of 
appropriate equations, giving a rigorous basis for the 
Oberbeck-Boussinesq approximation, one can refer 
[31]. According to the above-mentioned assumption, 
and for small departures from reference temperature 
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 the density 𝜌𝜌𝜌𝜌, as a function of temperature 𝑇𝑇𝑇𝑇, the 
density equation of state involving constant 
coefficient of volume expansion 𝛽𝛽𝛽𝛽 is given by  

𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜�1 − 𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜)�,                (4) 
 
In energy transport equation the thermal 

conductivity 𝐾𝐾𝐾𝐾��⃗ 𝑇𝑇𝑇𝑇 = 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥(𝚤𝚤𝚤𝚤̂𝚤𝚤𝚤𝚤̂ + 𝚥𝚥𝚥𝚥̂𝚥𝚥𝚥𝚥̂) + 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧�𝑘𝑘𝑘𝑘�𝑘𝑘𝑘𝑘�� is 
assumed to be anisotropic and is of the form 

 

( )( ) ( )1 0
,

1p p Tos
V H

DT T M DHC C T K T
Dt t T Dt

ε ε ρ µ • •

 ∂ ∂
+ − + = ∇ ∇ ∂ ∂ 

 


,                      (5) 

 
 

where ( )1 , ,o V H o V H
C C H M Tρ µ •= − ∂ ∂

 
, 

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝐻𝐻𝐻𝐻 is the specific heat at constant volume and 
magnetic field. 

Maxwell’s equations, simplified for a non-
conducting fluid with no displacement current, 
become 

𝛻𝛻𝛻𝛻 • 𝐵𝐵𝐵𝐵�⃗ = 0, 𝛻𝛻𝛻𝛻 × 𝐻𝐻𝐻𝐻��⃗ = 0                     (6) 

and 

( )0B H Mµ= +
  

                         (7) 

We adopt that the magnetization 𝑀𝑀𝑀𝑀��⃗  is aligned 
with magnetic field, but allows a dependence on the 
magnitude of the magnetic field as well as 
temperature,  

𝑀𝑀𝑀𝑀��⃗ = 𝐻𝐻𝐻𝐻��⃗
𝐻𝐻𝐻𝐻
𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻 ,𝑇𝑇𝑇𝑇)                        (8) 
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The magnetic equation of state is linearized about 
the magnetic field 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜 and an average temperature 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 
to give 

( ) ( )o o ommM M H H T TKχ+ −= − −      (9)

where mχ  and mK  are the differential magnetic
susceptibility and the pyromagnetic coefficient 
respectively. The temperatures of bottom and top 
surfaces respectively are 

𝑇𝑇𝑇𝑇(0) = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 + �1
2
� 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇(𝑑𝑑𝑑𝑑) = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 − �1

2
� 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇  (10) 

We now look at the necessary conditions for heat 
flow to continue in the above-noted permeable layer 
saturated in nanoscopic magnetic liquid. An 
undisturbed medium will be quiescent and be 
provided by 

�⃗�𝑣𝑣𝑣 = �⃗�𝑣𝑣𝑣𝑏𝑏𝑏𝑏 = 0�⃗ , 𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧),𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧),𝑇𝑇𝑇𝑇 = 
= 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧),𝐻𝐻𝐻𝐻��⃗ = 𝐻𝐻𝐻𝐻��⃗ 𝑏𝑏𝑏𝑏 = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡),
𝑀𝑀𝑀𝑀��⃗ = 𝑀𝑀𝑀𝑀��⃗ 𝑏𝑏𝑏𝑏 = 𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡),𝐵𝐵𝐵𝐵�⃗ = 𝐵𝐵𝐵𝐵�⃗ 𝑏𝑏𝑏𝑏 = 𝐵𝐵𝐵𝐵𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡)    (11) 

The temperature 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧) is a solution of 

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸2 + 𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2 � + 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2 = 0        (12) 

The solution of (12) subjected to the boundary 
conditions (10) is 

𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏 = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 + 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇 �1
2

− 𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
�             (13) 

The magnetic field, magnetization and the related 
magnetic induction equations followed by (13) and 
the stationary basic state quantities are  

𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏 = �1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝛥𝛥𝛥𝛥
(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

�1
2

− 𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
��  (14) 

𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏 = �𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜 + 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝛥𝛥𝛥𝛥
(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

�1
2

− 𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
��  (15) 

( )b o ooB M Hµ= +           (16) 

where 𝛿𝛿𝛿𝛿 = �1+𝜀𝜀𝜀𝜀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��
(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜) , 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 stands for the real 

part. We do not record the expressions of  𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 and  
𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 as these are not explicitly required in the 
remaining part of the paper. 

Linear Stability Analysis 

The stability of the system is studied by 
superimposing infinitesimal disturbances on the 
basic state and we now have 

�⃗�𝑣𝑣𝑣 = �⃗�𝑣𝑣𝑣𝑏𝑏𝑏𝑏 + �⃗�𝑣𝑣𝑣 ′,𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 + 𝑝𝑝𝑝𝑝′,𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 + 𝜌𝜌𝜌𝜌′,𝑇𝑇𝑇𝑇 = 
= 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏 + 𝑇𝑇𝑇𝑇 ′, 

𝐻𝐻𝐻𝐻��⃗ = 𝐻𝐻𝐻𝐻��⃗ 𝑏𝑏𝑏𝑏 + 𝐻𝐻𝐻𝐻��⃗ ′,𝑀𝑀𝑀𝑀��⃗ = 𝑀𝑀𝑀𝑀��⃗ 𝑏𝑏𝑏𝑏 + 𝑀𝑀𝑀𝑀��⃗ ′,𝐵𝐵𝐵𝐵�⃗ = 𝐵𝐵𝐵𝐵�⃗ 𝑏𝑏𝑏𝑏 + 𝐵𝐵𝐵𝐵�⃗ ′,  (17) 

where the prime indicates that the quantities are 
infinitesimal perturbations.  

Substituting (17) into (2) – (9), and using the 
basic state solutions, we get the linearized equations 
governing the perturbations in the form 

𝛻𝛻𝛻𝛻 • �⃗�𝑣𝑣𝑣′ = 0,           (18) 

𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝
�
𝜕𝜕𝜕𝜕�⃗�𝑣𝑣𝑣′
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
� = −𝛻𝛻𝛻𝛻𝑝𝑝𝑝𝑝′ + 𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇 ′𝑘𝑘𝑘𝑘� − 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾��⃗ • �⃗�𝑣𝑣𝑣 ′ + 

+𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜(𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜 + 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜)
𝜕𝜕𝜕𝜕𝐻𝐻𝐻𝐻��⃗ ′

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
− �𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

′

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑘𝑘𝑘𝑘� + �𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜

2𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2𝛥𝛥𝛥𝛥2𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜2(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑑𝑑𝑑𝑑

� 𝑇𝑇𝑇𝑇 ′𝑘𝑘𝑘𝑘� , (19) 

( )

( )

3 2

2 2
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−
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(1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝛻𝛻𝛻𝛻2𝜙𝜙𝜙𝜙′ − �𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

� 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
′

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0           (21) 

 
Here  𝜙𝜙𝜙𝜙 is the magnetic potential and 𝐻𝐻𝐻𝐻��⃗ = 𝛻𝛻𝛻𝛻𝜙𝜙𝜙𝜙′,  

( )( )23 1p p o sCC Cε ε ρ+= − , 𝐶𝐶𝐶𝐶2 = 𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝐻𝐻𝐻𝐻, �⃗�𝑣𝑣𝑣′ =

(𝑈𝑈𝑈𝑈′,𝑉𝑉𝑉𝑉′,𝑊𝑊𝑊𝑊′). For the ferromagnetic fluid layer and 
Darcy-anisotropic permeable medium, the 
boundaries are assumed to be stress-free, isothermal 
the boundary conditions at 𝑧𝑧𝑧𝑧 = 0 and 𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑 are 

 
𝑊𝑊𝑊𝑊 ′ = 𝜕𝜕𝜕𝜕2𝑊𝑊𝑊𝑊′

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
= 𝑇𝑇𝑇𝑇 ′ = 𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙′

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0,              (22) 

 
By operating curl twice on (19), we omit 𝑝𝑝𝑝𝑝′ from 

it, and then we render the resulting equation and 
(19) – (21) dimensionless by setting 

 

(𝑥𝑥𝑥𝑥∗,𝑦𝑦𝑦𝑦∗, 𝑧𝑧𝑧𝑧∗)𝑑𝑑𝑑𝑑 = �𝑥𝑥𝑥𝑥 ′,𝑦𝑦𝑦𝑦′, 𝑧𝑧𝑧𝑧′�,𝑇𝑇𝑇𝑇∗ = �
𝑇𝑇𝑇𝑇 ′

𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇
�, 

𝑊𝑊𝑊𝑊∗ = �
𝐶𝐶𝐶𝐶2𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊 ′

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧
� , 𝑡𝑡𝑡𝑡∗ = �

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡
𝐶𝐶𝐶𝐶2𝑑𝑑𝑑𝑑2

� , 

𝜙𝜙𝜙𝜙∗ = �(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝜙𝜙𝜙𝜙′

𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
� ,𝜔𝜔𝜔𝜔∗ = �𝐶𝐶𝐶𝐶2𝑇𝑇𝑇𝑇

2𝜔𝜔𝜔𝜔′

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧
�,          (23) 

 
to obtain non-dimesnional equations as (on dropping 
‘*’ for simplicity), 
 

�
1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝛻𝛻𝛻𝛻2 + 𝛻𝛻𝛻𝛻12 +

1
𝜉𝜉𝜉𝜉
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
�𝑊𝑊𝑊𝑊 = 

= [𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1𝜓𝜓𝜓𝜓2]𝛻𝛻𝛻𝛻12𝑇𝑇𝑇𝑇 − 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1𝜓𝜓𝜓𝜓2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

(𝛻𝛻𝛻𝛻12𝜙𝜙𝜙𝜙),    (24) 
 

𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

−𝑊𝑊𝑊𝑊 + 𝑀𝑀𝑀𝑀2 �
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝜓𝜓𝜓𝜓2

𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜(1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)� �
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

−𝑊𝑊𝑊𝑊� + 

+
𝑀𝑀𝑀𝑀2

𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝
𝛿𝛿𝛿𝛿2𝑊𝑊𝑊𝑊 −𝑀𝑀𝑀𝑀2

1
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛿𝛿𝛿𝛿 �

𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
� − 

−𝑀𝑀𝑀𝑀2 �
𝜓𝜓𝜓𝜓2

(1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
�
𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
� −𝑀𝑀𝑀𝑀2

1
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝜓𝜓𝜓𝜓 = 

= 𝜂𝜂𝜂𝜂𝛻𝛻𝛻𝛻12𝑇𝑇𝑇𝑇 + 𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2

,                           (25) 
 

𝛻𝛻𝛻𝛻2𝜙𝜙𝜙𝜙 = 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

,                             (26) 
 
where, 𝜓𝜓𝜓𝜓 = �1 + 𝜀𝜀𝜀𝜀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔��, 𝜔𝜔𝜔𝜔 is the frequency of 

modulation, 𝛻𝛻𝛻𝛻2 = 𝛻𝛻𝛻𝛻12 + 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
 and𝛻𝛻𝛻𝛻12 = 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸2
+ 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2
. The 

dimensionless parameters are 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝛾𝛾𝛾𝛾𝑇𝑇𝑇𝑇2

𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧𝜅𝜅𝜅𝜅
, the 

Vadasz number,𝑅𝑅𝑅𝑅 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧
𝛾𝛾𝛾𝛾𝜅𝜅𝜅𝜅

, the Darcy-Rayleigh 

number, 𝑀𝑀𝑀𝑀1 = 𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)3𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇3
,  the buoyancy-

magnetization parameter, 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1 = 𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜2(𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇)2𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧
𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓𝜅𝜅𝜅𝜅(1+𝜒𝜒𝜒𝜒0)3 , the 

magnetic Rayleigh number and𝑀𝑀𝑀𝑀2 = 𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜2𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2

𝐶𝐶𝐶𝐶2(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜
, the 

magnetization parameter, 𝜉𝜉𝜉𝜉 = 𝐾𝐾𝐾𝐾𝑥𝑥𝑥𝑥
𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧

 is the mechanical 

anisotropy parameter, 𝜂𝜂𝜂𝜂 = 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥
𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧

 is the thermal 

anisotropy parameter, 𝜅𝜅𝜅𝜅 = 𝐾𝐾𝐾𝐾1
𝐶𝐶𝐶𝐶2

, 𝛾𝛾𝛾𝛾 = 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓
𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜

, 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝 = 𝐶𝐶𝐶𝐶3
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶2

 . 

The parameter 𝑀𝑀𝑀𝑀2 is equivalent to the order of 
10−6 [3]. Hence 𝑀𝑀𝑀𝑀2 is omitted in further calculations. 
For simplicity 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝 and 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝 is assumed to be one. At 𝑧𝑧𝑧𝑧 =
0 and 𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑 the boundary condition (22) in the non-
dimesnional form is given by  

 
𝑊𝑊𝑊𝑊 = 𝜕𝜕𝜕𝜕2𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
= 𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0              (27) 

 
After eliminating the coupling between (24) – 

(26) we obtain a single differential equation for the 
vertical component of velocity 𝑊𝑊𝑊𝑊as 

 
𝐿𝐿𝐿𝐿𝛻𝛻𝛻𝛻2𝑊𝑊𝑊𝑊 = 𝑅𝑅𝑅𝑅𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊 + 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1𝜓𝜓𝜓𝜓2𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊      (28) 

 
where 

 

𝐿𝐿𝐿𝐿 = �
1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝛻𝛻𝛻𝛻2 + 𝛻𝛻𝛻𝛻12 +

1
𝜉𝜉𝜉𝜉
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
� �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
− 𝜂𝜂𝜂𝜂𝛻𝛻𝛻𝛻12 −

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
� 

 
The boundary condition (27) in terms of the 

vertical component of velocity at 𝑧𝑧𝑧𝑧 = 0 and   𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑 
become [32] 

 
𝑊𝑊𝑊𝑊 = 𝜕𝜕𝜕𝜕2𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
= 𝜕𝜕𝜕𝜕4𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧4
= 𝜕𝜕𝜕𝜕6𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧6
= 0           (29) 

 
Solution procedure 
 
In view of small amplitude (𝜀𝜀𝜀𝜀 < 1) assumption, 

we now seek the eigenfunctions 𝑊𝑊𝑊𝑊 and eigenvalues 
𝑅𝑅𝑅𝑅 of (28) for a modulated magnetic field that is 
different from the constant magnetic field. The 
eigenfunction  𝑊𝑊𝑊𝑊 and eigenvalue 𝑅𝑅𝑅𝑅 should be a 
function of 𝜀𝜀𝜀𝜀 and they should be obtained for a given 
Vadasz number 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, buoyancy-magnetization 
parameter 𝑀𝑀𝑀𝑀1, mechanical anisotropy parameter 𝜉𝜉𝜉𝜉, 
thermal anisotropy parameter 𝜂𝜂𝜂𝜂 and frequency 𝜔𝜔𝜔𝜔. 
Hence, we figured out (28) followed by the 
assumption of Venazian [33] of the form 
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�𝑊𝑊𝑊𝑊𝑅𝑅𝑅𝑅 � = �𝑊𝑊𝑊𝑊0
𝑅𝑅𝑅𝑅0
� + 𝜀𝜀𝜀𝜀 �𝑊𝑊𝑊𝑊1

𝑅𝑅𝑅𝑅1
� + 𝜀𝜀𝜀𝜀2 �𝑊𝑊𝑊𝑊2

𝑅𝑅𝑅𝑅2
� + 

+𝜀𝜀𝜀𝜀3 �𝑊𝑊𝑊𝑊3
𝑅𝑅𝑅𝑅3
� +⋅⋅⋅⋅⋅⋅⋅⋅⋅                    (30) 

 
On substituting (30) over (28) and comparing the 

correlative terms up to order of 𝜀𝜀𝜀𝜀2, yields 
 

𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊0 = 0,                            (31) 
 

𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊1 = 𝑅𝑅𝑅𝑅1𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊0 + 𝑅𝑅𝑅𝑅1𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0 + 
+2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔� 𝑅𝑅𝑅𝑅0𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0,                (32) 

 
𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊2 = 𝑅𝑅𝑅𝑅1𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊1 + 𝑅𝑅𝑅𝑅2𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊0 + 

+𝑅𝑅𝑅𝑅1𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊1 + 𝑅𝑅𝑅𝑅2𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0 
 
+2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔� 𝑅𝑅𝑅𝑅0𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊1 + 
+2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔� 𝑅𝑅𝑅𝑅1𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0,                 (33) 

 
where 

𝐺𝐺𝐺𝐺 = 𝐿𝐿𝐿𝐿𝛻𝛻𝛻𝛻2 − 𝑅𝑅𝑅𝑅0 �
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
+ (1 + 𝑀𝑀𝑀𝑀1)𝛻𝛻𝛻𝛻12� 𝛻𝛻𝛻𝛻12 

The function 𝑊𝑊𝑊𝑊0 is the solution of unmodulated 
Rayeligh-Benard problem in ferromagnetic fluids 
[3]. The marginally stable solution for that problem 
is 

𝑊𝑊𝑊𝑊0 = �𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖�𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝐸𝐸𝐸𝐸+𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦�� 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋 𝑧𝑧𝑧𝑧,             (34) 
 
corresponding to the lowest mode of convection with 
the Rayleigh number 𝑅𝑅𝑅𝑅0 is given by 
 

𝑅𝑅𝑅𝑅0 =
�𝜋𝜋𝜋𝜋

2

𝜉𝜉𝜉𝜉 +𝛼𝛼𝛼𝛼
2��𝜋𝜋𝜋𝜋2+𝜂𝜂𝜂𝜂𝛼𝛼𝛼𝛼2��𝜋𝜋𝜋𝜋2+𝛼𝛼𝛼𝛼2�

𝛼𝛼𝛼𝛼2[𝜋𝜋𝜋𝜋2+(1+𝑀𝑀𝑀𝑀1)𝛼𝛼𝛼𝛼2] ,            (35) 
 
Following the analysis of [29, 33], one obtains 

the first non-zero correction to 𝑅𝑅𝑅𝑅0  
 

𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅02𝑀𝑀𝑀𝑀1
2𝛼𝛼𝛼𝛼6

[𝜋𝜋𝜋𝜋2+(1+𝑀𝑀𝑀𝑀1)𝛼𝛼𝛼𝛼2]
∑ 𝑄𝑄𝑄𝑄𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛
∞
𝑛𝑛𝑛𝑛=1 ,         (36) 

where 
 

𝑄𝑄𝑄𝑄𝑛𝑛𝑛𝑛 = −2

⎝

⎜
⎛(𝜂𝜂𝜂𝜂𝛼𝛼𝛼𝛼2 + 𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2)(𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + 𝛼𝛼𝛼𝛼2)�

𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2

𝜉𝜉𝜉𝜉
+ 𝛼𝛼𝛼𝛼2� − 𝑅𝑅𝑅𝑅0𝛼𝛼𝛼𝛼2[𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + (1 + 𝑀𝑀𝑀𝑀1)𝛼𝛼𝛼𝛼2]

−𝜔𝜔𝜔𝜔2 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

(𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + 𝛼𝛼𝛼𝛼2)2
⎠

⎟
⎞

 

 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 =

⎝

⎜
⎛(𝜂𝜂𝜂𝜂𝛼𝛼𝛼𝛼2 + 𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2)(𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + 𝛼𝛼𝛼𝛼2)�

𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2

𝜉𝜉𝜉𝜉
+ 𝛼𝛼𝛼𝛼2� − 𝑅𝑅𝑅𝑅0𝛼𝛼𝛼𝛼2[𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + (1 + 𝑀𝑀𝑀𝑀1)𝛼𝛼𝛼𝛼2]

−𝜔𝜔𝜔𝜔2 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

(𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + 𝛼𝛼𝛼𝛼2)2
⎠

⎟
⎞

2

 

+𝜔𝜔𝜔𝜔2 �−
1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

(𝜂𝜂𝜂𝜂𝛼𝛼𝛼𝛼2 + 𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2)(𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + 𝛼𝛼𝛼𝛼2)2 − (𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2 + 𝛼𝛼𝛼𝛼2)�
𝑠𝑠𝑠𝑠2𝜋𝜋𝜋𝜋2

𝜉𝜉𝜉𝜉
+ 𝛼𝛼𝛼𝛼2��

2

 

 
 
Results and discussion 
 
The outcome of time-periodic magnetic field 

fluctuation on the onset of ferroconvection in a 
horizontal anisotropic densely arranged permeable 
layer is investigated using the linear stability 
analysis, the analytical solution was accomplished by 
means of the standard normal mode approach 
proposed by Venezian [33]. The shift in the 
correction to the critical Rayleigh number 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 
equation is computed by means of the regular 
perturbation technique as a function of the modulated 
magnetic field frequency 𝜔𝜔𝜔𝜔, magnetic parameter 𝑀𝑀𝑀𝑀1, 
mechanical anisotropy parameter 𝜉𝜉𝜉𝜉, thermal 

anisotropy parameter 𝜂𝜂𝜂𝜂 and Vadasz number 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 
the results are depicted with the help of Figures 2 
through 5. The stabilizing or destabilizing impact of 
magnetic field fluctuation is determined by the sign 
of  𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. A positive 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 means supercritical instability 
occurs while a negative 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 means subcritical 
instability occurs, in contrast to system without time-
varying magnetic field.  

Figure 2(a) and 2(b) shows the variability of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 
on 𝜔𝜔𝜔𝜔 and 𝑀𝑀𝑀𝑀1 at 𝜉𝜉𝜉𝜉 = 0.7, 𝜂𝜂𝜂𝜂 = 0.5 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 5. 
Among these figures it is obvious that an increament 
in 𝑀𝑀𝑀𝑀1 augments the magnitude of the 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐, provided 
𝜔𝜔𝜔𝜔 is minimum (see fig. 2(a)), while moderate and 
large 𝜔𝜔𝜔𝜔 (see fig. 2(b)) decrements the magnitude of 
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𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. It is proved in Fig. 2(a) that at weak modulation 
frequency, 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 < 0 signifying that the magnetic field 
modulation destabilizes the physical framework 

while from Fig. 2(b), it is clear that 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 > 0 for 
moderate and strong frequency. It implies that 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 
stabilizes the framework of the problem.  

 

                            
Figure 2(a) – Plot of small and moderate 

 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝑀𝑀𝑀𝑀1.  
Figure 2(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  

with variation in 𝑀𝑀𝑀𝑀1. 
 
  

The diversification of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 upon 𝜔𝜔𝜔𝜔 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 for 
a specific term 𝜉𝜉𝜉𝜉 = 0.7, 𝜂𝜂𝜂𝜂 = 0.5 and 𝑀𝑀𝑀𝑀1 = 50 is 
shown in Figures 3(a) and 3(b). We observe from 
this figures that as raising 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 advances the range 
of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. At 𝜔𝜔𝜔𝜔 = 10, the peak point of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 spreads 
by enhancing 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. The force of Vadasz number 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 
on the steadiness of the mechanism is exactly 
opposite to 𝑀𝑀𝑀𝑀1. The most notable outcome of the  
 

problem can be elucidated by exploring the 
outcomes of Figs. 2-3. Comparing the Vadasz 
number discrepancy with magnetic parameter, we 
reveal that the least value of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 is lower. This 
explicitly reveals that over 𝑀𝑀𝑀𝑀1, the Vadasz 
number plays a vital role in augmenting 
ferroconvection and magnetic number is a crucial 
in postponing ferroconvection. 

 
 

                        
Figure 3(a) – Plot of small and moderate 𝜔𝜔𝜔𝜔  

verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. 
Figure 3(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  

with variation in 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. 
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The force of mechanical anisotropy 𝜉𝜉𝜉𝜉 on 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 at 
𝑀𝑀𝑀𝑀1 = 50, 𝜂𝜂𝜂𝜂 = 0.5 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 5 is shown in Figures 
4(a) and 4(b) for weak and moderately large 
𝜔𝜔𝜔𝜔respectively. We note that a rise in the range of 𝜉𝜉𝜉𝜉 
results in a fall in the range of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. This signifies that, 
the impact of growth in 𝜉𝜉𝜉𝜉, minimizes the outgrowth 
of time-varying magnetic field. It is meaningful to 
emphasize that at moderate and significant value of 
frequency, 𝜉𝜉𝜉𝜉 = 0.1,0.5,0.7 experience a strong 

destabilizing influence. Conversely, at small value of 
𝜔𝜔𝜔𝜔, mechanical anisotropy 𝜉𝜉𝜉𝜉 = 0.1,0.5,0.7minimizes 
the fluctuation impact of magnetic force.  

The result of thermal anisotropy 𝜂𝜂𝜂𝜂 is shown in 5 
(a) and 5 (b) to elucidate the system’s stableness for 
a fixed value of 𝑀𝑀𝑀𝑀1 = 50, 𝜉𝜉𝜉𝜉 = 0.7 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 5. 
According to our observation, the large value of 𝜂𝜂𝜂𝜂 
delays the onset of convection as expected when 𝜂𝜂𝜂𝜂 
increases as a function of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐.   
 

 

                
 

Figure 4(a) – Plot of small and moderate 𝜔𝜔𝜔𝜔  
verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝜉𝜉𝜉𝜉. 

Figure 4(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  
with variation in 𝜉𝜉𝜉𝜉. 

 
 

           
 

Figure 5(a) – Plot of small and moderate 𝜔𝜔𝜔𝜔  
verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝜂𝜂𝜂𝜂. 

Figure 5(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  
with variation in 𝜂𝜂𝜂𝜂. 
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Conclusions 
 
The impact of magnetic field fluctuation on the 

advent of nanoscopic magnetic liquid advection in a 
thickly condensed anisotropic saturated permeable 
configuration is carefully elucidated adopting 
stability test and the succeeding conclusions are 
outlined: 

 The weak frequency 𝜔𝜔 of magnetic field 
fluctuation is destabilizing while strong frequency of 
modulated magnetic field is continuously stabilizing. 

 The effect of magnetic mechanism 𝑀𝑀� on 
magnetic field modulation is to stabilize at minute 

frequency and destabilize at balanced and strong 
frequency. 

 The outcome of Vadasz number 𝑉𝑉𝑉𝑉 makes 
system stable expect for minute values of 𝜔𝜔 in the 
modulated magnetic field. 

 At moderate and large 𝜔𝜔, an increase in 
mechanical anisotropy 𝜉𝜉 strengthens the impact of 
magnetic field fluctuation, whereas an increase in 
thermal anisotropy 𝜂𝜂 weakens the impact of 
fluctuated magnetic field. However, at low 𝜔𝜔, 
enhancing the parameters 𝜉𝜉 and 𝜂𝜂 gives opposite 
result of modulated magnetic field. 

 The outcome of magnetic field fluctuation 
vanishes at high 𝜔𝜔 in each case.
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