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Energy loss of relativistic projectiles in non-ideal electron liquids 

 
 

Abstract. The energy loss of relativistic projectiles in collisional one-component plasmas is analyzed 
within the method of moments. Both the canonical and non-canonical solutions of the Hamburger 
moment problem corresponding to five convergent power frequency moments of the electron plasma loss 
function are employed with the static, purely imaginary, Nevanlinna parameter with the imaginary part 
iqual to the collision frequency calculated within the Green-Kubo formalism in terms of static structure 
factors evaluated in the HNC approximation using the Deutsch effective potential.Thus we take into 
account the dissipation processes in the plasma. It is pointed out that the correlations only slightly 
influence the deviation of the stopping power with the relativistic corrections taken into account from the 
classical Bethe-Bohr-Larkin asymptotic form.  
Keywords: stopping power, relativistic velocity, sum rules, method of moments. 

 
 
 
Introduction 
 
Stopping power is a characteristic of primary 

interest for different areas of physics such as 
nuclear physics, condensed matter physics and 
plasma physics, as it arises when studying the 
interaction of charged particles with matter. In 
1930 Bethe derived his seminal formula for the fast 
projectile energy losses assuming that the atoms of 
the medium behave as quantum-mechanical 
oscillators [1]. Later, Larkin [2] showed that when 
fast ions permeate an electron gas, an analogous 
formula is applicable, but with the mean excitation 
frequency replaced by the plasma frequency p : 
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where Ze  and v  stand for the charge and velocity 

of the projectile, and  1/ 22= 4 /p ne m  ,  
 
 
 
 

m  being the electron mass. This formula is 
usually employed to determine experimentally the 
number density of electrons, n , in a charged 
particle system. Particularly, its applicability seems 
to be more promising in the field of plasma physics 
[3,4,5] for two reasons: first, in an ionized medium 
the energy loss is mainly caused by the free 
electrons, leading to an enhancement of the 
stopping power compared to the cold target [3,4,5]; 
secondly, this technique appears as the only 
suitable candidate for the diagnosis of hot and 
dense ( 1910n 3cm ) plasmas, because most of 
the other methods fail under these conditions [5]. 

Leaving the ionization losses aside, to calculate 
the stopping power of a fast projectile passing 
through a Coulomb fluid we will adopt the 
polarizational picture, which becomes more 
accurate as the kinetic energy of the projectile 
increases. In 1954 Lindhard obtained an expression 
relating the polarizational stopping power with the 
medium (longitudinal) dielectric function [6]. This 
expression can be generalized further by applying 
the Fermi golden rule to obtain [7,8,9]:  * Corresponding author e-mail: yarkhipov@yahoo.са
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  2= / 2k kv k M   , where M  is the  

mass of the projectile (here we will work  
with heavy projectiles, M m ), and 

     1= 1 expBn   


  1, 1   being the 
system temperature in energy units. In addition, 
unmagnetized Coulomb fluids are considered and, 
hence, the dielectric function effectively depends 
only on the wavevector modulus. Expression (2) is 
valid only if the interaction between the projectile 
and the plasma is so weak that it can be treated as a 
linear effect and no plasma relativistic effects need 
to be taken into account, i.e., when the energy lost 
by a projectile is much less than its kinetic energy, 
which, in turn, is assumed to be much smaller than 
its rest energy2. 

The literature on the polarizational stopping 
power is very extensive. The problem has been 
analyzed within the random-phase approximation 
(RPA) [7] and beyond, introducing an analytic 
formula for the local field correction (LFC) factor 
[10]. In addition there are also nonlinear 
polarization effects [11], which are beyond the 
scope of this work. Whereas we assume that the 
coupling between the projectile and the target  
one-component plasma can be treated 
perturbatively, we do not impose any restriction on 
the value of the coupling parameter, 2= /e a   
( 1/3= (4 / 3)a n   being the Wigner-Seitz radius), 
with the proviso that the latter remains in the liquid 
phase3. The modeling of its dielectric properties 
constitutes a difficult task, because its 
characteristic lengths, i.e., Wigner-Seitz radius and 
Debye radius, 2 1/2= (4 )D ne    , are of the same 
order of magnitude (in a non-ideal plasma 1 , 
which makes mean field theories, such as the RPA, 
and perturbative treatments no longer valid) and, at 
the same time, the electronic system is degenerate. 

 
                                                      

1 Notice that ( ) ( ) 1B Bn n    . 
2 For instance, in the experiments reported in Refs. [3, 4, 

5] the plasma temperature was of the order of a few eV (in 
Ref. [4] it is said to be below 500 eV), whereas the projectiles 
where protons and deuterons at around 1 MeV. 

3 Non-ideal plasmas are known to crystallize at large 
values of coupling forming an anisotropic phase. 

Lately, the problem of energy losses of 
relativistic protons has arised [12] and our aim here 
is to determine the relativistic corrections to the 
asymptotic form of energy losses of fast projectiles 
in non-ideal electron liquid. 

 
The framework  
 
Our dielectric formalism is based on the 

method of moments [13,14,15], which allows to 
determine the dielectric function ( , )k   from the 
first known frequency moments or sum rules. The 
sum rules we employ are actually the power 
frequency moments of the loss function (LF)  
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defined as  
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Due to the parity of the LF, all odd-order 

frequency moments vanish. The even-order 
frequency moments are determined by the static 
characteristics of the system. After a 
straightforward calculation one obtains [16,13,15]:  

 
1 2

0 2( ) = (1 ( ,0)), ( ) = ,pC k k C k   
 

4
4 ( ) = (1 ( ) ( ) ),pC k K k U k H     

with  
  22 2 2 4 2( ) = / 2 / ,e pK k v k k m 

 
 

2
ev  being the average squared characteristic 

velocity of the plasma electrons. The last term in 
the fourth moment stems from the interaction 
contribution to the system Hamiltonian and can be 
expressed in terms of the structure factor  S k : 
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where we have introduced  
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The Nevanlinna formula of the theory of 

moments expresses the dielectric function which 
satisfies the known sum rules 2

2 =0{ }C   [13]:  
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where  
 

   2 2 2 2
1 1 2 0 2 2 4 2= = / , = = / ,k C C k C C     
 

in terms of a function  ( , )q q k z , which is analytic 
in the upper complex half-plane Imz>0  and 
having there a positive imaginary part. It must also 
satisfy the limiting condition: ( ( , ) / ) 0q k z z   as 
z  for Im > 0z . In an electron liquid this 
Nevanlinna parameter function plays the role of 
the dynamic LFC  ,G k  . In particular, the 
Ichimaru visco-elastic model expression for 
 ,G k   is equivalent to the Nevanlinna function 

approximated as / mi  , m  being the effective 
relaxation time of the Ichimaru model [17]. Thus 
we choose the Nevanlinna parameter function to be 
equal to iνwith the collision frequency calculated 
within the Green-Kubo formalism in terms of the 
plasma species static structure factors as it was 
suggested in [18]. The static structure factors were 
computed within the HNC approximation using the 
Deutsch effective potential [19]. 

 
The corrected Bethe-Larkin formula 
 
Let us choose a model function q  satisfying 

the conditions mentioned after the Nevanlinna 
formula (3) that would permit to treat the stopping 
power calculation analytically. If we put simply 

( , ) = 0q k i  , then we get the following particular 
solution of the moment problem:  
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 (4) 

 
Physically, Eq. (4) describes an undamped 

collective excitation mode (Feynman approximation) 
at  2 k  with an additional central peak accounting 
for hydrodynamic diffusional processes. The 
applicability of this expression is justified provided 
that the damping of the collective excitation is small 
enough making this mode to act as the main energy 
transfer channel. Thus we can disregard the details of 
the rest of the excitation spectrum. If we introduce 
expression (4) into the Lindhard formula (2), it 
immediately reduces to: 
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where the "cut-off" wavenumbers 1k  and 2k  are 

such that the inequality  20 < <k kv  is satisfied 

with / Fv v   and  2 k  understood as the 

plasma Langmuir mode dispersion law ( )L k . 
For a weakly coupled plasma the RPA dispersion 
law is valid which neglects the correlational 
contributions to ( )L k :  
 

  1/222 2 2 2 4( ) = / 2 .L p ek v k k m   
 

 
Then, if v  is asymptotically large, we have 

1 = /pk v , 2 = 2 /k mv , and we recover the 
Bethe-Larkin result [1,2]. Notice that in the above-
mentioned inequality for 2 , we have presumed 

that 2 / 2kv k M , which is equivalent to 
disregard, at most, terms of the order of /m M . 

To take into account all Coulomb and 
exchange interactions in the system analytically, 
we might use for the electron-electron contribution 
 U k  its long- and short-range asymptotic forms,  
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where 2 = 4 / (15 )ee eev E nm  is defined by the 
plasma electron-electron interaction energy density 

eeE  of the plasma [9],  0eeh  being equal to the 

previous expression for  U k , but with the 
function ( , )f p k  replaced by unity. If we 
interpolate the plasma mode dispersion law as 
  

  1/222 2 2 4( ) = / 2 ,L pk wk k m   
 

 

with 2 2= 2 e eew v v , then the "cut-off" 

wavenumber 1k  still equals /p v , for 

/ Fv v  , so that the fast projectile stopping 
power relmais equal to 
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Energy loss of relativistic projectiles 
 
Relativistic corrections to the Lindhard 

formula were studied in [20]: 
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It can be easily seen that when the speed of light c  and M m , (7) turns into (6). Now, observe that  
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so that (7) simplifies into:  
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We have analyzed numerically the relative 
importance of (8) as compared to (6), the results 
are presented in figures 1–4. The one-component 
plasma static characteristics were estimated in the 
HNC approximation [19]. The continuous lines 
correspond to the expression (8), while the 
discontinuous lines do not include the realtivistic 
corrections, formula (6). The velocity is measured 
in terms of the Fermi velocity  
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is the Wigher-Seitz radius, and 2 2= /Ba me  is the 
Bohr radius. The plasma coupling parameter  
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T being the plasma temperature. 

 

 
Figure 1 – The stopping power absolute value at

10.776  , 2.5256sr  for very fast projectiles. 
 

 
Figure 2 – The stopping power absolute value at

1.077  , 2.5256sr  for very fast projectiles. 

 
Figure 3 – The stopping power absolute value at

2.321,  1.172sr  for very fast projectiles. 
 

 
Figure 4 – The stopping power absolute value at

0.5  , 5.441sr  for very fast projectiles. 
 
Conclusions 
 
In this paper we have studied how the Bethe-

Larkin asymptotic expression (2) for the electron 
plasma stopping power is modified when the 
projectiles possess a relativistic velocity, up to 
about 85% of the light speed c . We observe that in 
non-ideal plasmas, i.e., at higher densities, the 
relativistic efects become slightly more 
pronounced. The results can be used to diagnose 
plasmas within the method of proton radiography.  
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