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Scattering phase shifts of lithium isotopes

Abstract. Investigation of few body cluster systems is very important in nuclear physics. Problems 
appearing in few body systems can in principle be divided into two classes: bound state problems and 
scattering problems. The bound state problems are usually related to the spectroscopy of such systems while 
scattering problems describe their reactions. The main focus in the work is the scattering problem for 
systems consisting of two cluster systems. The single channel two body scattering problem is considered 
in the framework of different spin parity states for lithium isotopes. 

Scattering phase shifts on negative and positive parity states of 5Li, 6Li and 7Li nuclei are calculated 
applying two-body 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝, 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 systems and the complex scaling method. 6Li and 7Li are stable 
nuclei and their ground and low-lying excited states are considered in this work. 

In this study, we calculated scattering phase shifts of the negative parity 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2−
states for 𝑝𝑝𝑝𝑝 −wave of 5Li, 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2−, 3/2− and 1/2− states for 𝑝𝑝𝑝𝑝 − and 𝑓𝑓𝑓𝑓 −waves of 7Li and the 
positive parity 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+, 2+, 3+ states for 𝑠𝑠𝑠𝑠 − and 𝑑𝑑𝑑𝑑 − waves of 6Li.

Key words: phase shifts, structure of light nuclei, two-body system, low-lying excited states, ground 
state.

Introduction

\During last several decades, scientists have tried 
and failed to provide a complete solution to scattering 
in complex nuclear system, one of the most 
fundamental phenomena in nuclear physics. Nuclear 
physics is one of the most rapidly developing fields 
of natural science in terms of theoretical and 
experimental research, many important and 
interesting issues remain still unclear in this area. The 
nuclei are complex objects consisting of several 
interacting nucleons where neutrons and protons 
have been arranged with different combinations.
Light nuclei have exotic properties owing to 
peculiarities of the nuclear forces and quantum states 
of nucleon systems. To understand the characteristic 
properties of every nucleus, we use appropriate 
nuclear models and effective nuclear and Coulomb 
interactions [1-2].

The nuclear models can contain quasistationary 
or virtual states of nuclei, as well as their excited 
states located on the complex energy plane close to 
the real physical region of existence of the nuclei [3-
7]. Nuclear models not only focused on the 
description of nuclear structures and reactions, but
also considered nuclear fission and nuclear decay. At
the beginning of development for nuclear models, it
was known that the nucleons tend to group into 
clusters were extremely important in determining the 
structure of light nuclei. Consequently, the cluster 
structure of nucleus ground and excited (resonance or 
virtual) states became the focus of theoretical and 
experimental studies. Light nuclei are loosely bound 
and change their configurations when they interact 
with nucleons or other nuclei at relatively small 
distances. It was informed that a nucleus cluster 
structure is displayed in reactions with neutrons at 
low energies and with protons at energies higher than 
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Coulomb potential barrier. In the reactions of neutron 
scattering for various nucleus in the low-energy 
region is quite well measured by experimentally but 
the measured data for proton scattering on light 
nuclei at low energies is rare.

In this work, we apply the complex scaling 
method (CSM) [8-9] to the 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝, 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡
two-body models for obtaining ground and low-lying
excited states of 5Li, 6Li and 7Li nuclei. Applying the
CSM and 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 two-body model for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2−
and 1/2− states of 5Li, 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 two-body model for the
𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ , 2+, 3+ states of 6Li and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 two-body 
model 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2−, 3/2− and 1/2− states of 7Li.

For 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 systems the negative parity 
states of 𝑝𝑝𝑝𝑝 − and 𝑓𝑓𝑓𝑓 − waves are considered for the 
calculation of scattering phase shifts. The phase shifts 
for positive parity states in 𝑠𝑠𝑠𝑠 − and 𝑑𝑑𝑑𝑑 − waves of 
𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 system is calculated.

Complex Scaling Method and Two Body 
Model

The Schrödinger equation, 𝐻𝐻𝐻𝐻�𝛹𝛹𝛹𝛹 = 𝐸𝐸𝐸𝐸𝛹𝛹𝛹𝛹 , is 
transformed as

𝐻𝐻𝐻𝐻𝜃𝜃𝜃𝜃𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃 = 𝐸𝐸𝐸𝐸𝜃𝜃𝜃𝜃𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃, (1)

where the complex scaled wave function is defined 
as

𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃 = 𝑈𝑈𝑈𝑈(𝜃𝜃𝜃𝜃)𝛹𝛹𝛹𝛹 = 𝑒𝑒𝑒𝑒
3
2𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃𝛹𝛹𝛹𝛹(𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃). (2)

The factor 𝑒𝑒𝑒𝑒
3
2𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 comes from the Jacobian of the 

coordinate transformation for 𝑟𝑟𝑟𝑟. The Hamiltonian in 
Eq. (1) is 

𝐻𝐻𝐻𝐻𝜃𝜃𝜃𝜃 = 𝑈𝑈𝑈𝑈(𝜃𝜃𝜃𝜃)𝐻𝐻𝐻𝐻𝑈𝑈𝑈𝑈−1(𝜃𝜃𝜃𝜃). (3)

To solve Eq. (1), we expand the wave functions 
𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃(𝑘𝑘𝑘𝑘, 𝑟𝑟𝑟𝑟) to a finite number of 𝐿𝐿𝐿𝐿2 basis functions, the 
Gaussian basis functions 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟) for 𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁,

𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃(𝑘𝑘𝑘𝑘, 𝑟𝑟𝑟𝑟) = ∑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘,𝜃𝜃𝜃𝜃) 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖 . (4)

The coefficients 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘, 𝜃𝜃𝜃𝜃) and the discrete spectra 
are obtained by solving the eigenvalue problem

∑ 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘,𝜃𝜃𝜃𝜃) = 𝐸𝐸𝐸𝐸𝜃𝜃𝜃𝜃𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘,𝜃𝜃𝜃𝜃) 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖 ,         (5)

𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 = �𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖�𝐻𝐻𝐻𝐻𝜃𝜃𝜃𝜃�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖�,                      (6)

where 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 are the matrix elements of the complex 
scaled Hamiltonian given in Eq. (3).

Applying the CSM to two-body 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 model the 
Hamiltonian is expressed as 

𝐻𝐻𝐻𝐻� = ∑ 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇�𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚.
2
𝑖𝑖𝑖𝑖=1 + 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁(𝑟𝑟𝑟𝑟) + 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟𝑟𝑟), (7)

where 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇�𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚. are the kinetic energy operators of 
the 𝑖𝑖𝑖𝑖 −th cluster and the center-of-mass of the total 
system, respectively. 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁 is alpha-proton potential, 
𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟𝑟𝑟) is Coulomb potential. For the 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 and 
𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 two-body models the same Hamiltonian given 
in Eq. (7) is applied.

For each partial wave, we use Gaussian functions 
with different size parameters as basis functions

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖ℓ(𝑟𝑟𝑟𝑟, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) = 𝑁𝑁𝑁𝑁ℓ(𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) 𝑟𝑟𝑟𝑟ℓ exp �− 1
2𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

2 𝑟𝑟𝑟𝑟2�, (8)

𝑁𝑁𝑁𝑁ℓ(𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) = 1
𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖
ℓ+3/2 �

2ℓ+2

(2ℓ+1)‼ √𝜋𝜋𝜋𝜋
�
1/2

,            (9)

where the parameters (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖: 𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁) are give by 
a geometrical progression of the form 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏0𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖−1 ,                       (10)

where 𝑏𝑏𝑏𝑏0 and 𝛾𝛾𝛾𝛾 are the first term and the common 
ratio, respectively. 

Results and Discussion

𝜶𝜶𝜶𝜶 + 𝒑𝒑𝒑𝒑 two body system
Phase shifts of the elastic scattering of proton

from an alpha particle are shown in Figure
1. Calculated phase shifts for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and
𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− states generated by the total orbital 
momentum 𝐿𝐿𝐿𝐿 = 1 , which has a resonant state for 
each partial state. We obtained resonance state 
energy 0.74 MeV with decay width 0.59 MeV for 
𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and resonance state energy 2.10 MeV and 
its decay width 5.82 MeV for 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− states. As 
can be seen from Figure 1 a), a narrow decay width 
state is calculated for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− state and the
calculated scattering phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2−
state increases rapidly from 1 MeV due to the small 
decay width. A resonance energy with large decay 
width for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− state is obtained and the 
calculated phase shifts approaches 𝜋𝜋𝜋𝜋 2⁄ which shows 
a clear resonance behavior in Figure 1 b).
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Figure 1 –The scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 system /
for 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− (a) and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− (b).

𝜶𝜶𝜶𝜶 + 𝒅𝒅𝒅𝒅 two body system
6Li is a stable nucleus and excited energy levels

are observed by experimentally. Calculated phase 
shifts for the elastic 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 scattering of the orbital 
momentum 𝐿𝐿𝐿𝐿 = 0 and 2 , the total angular 
momentum 𝐽𝐽𝐽𝐽 are presented in Figure 2. In this 
calculation we consider only even parity states of 6Li

and ignored odd parity states because phase shifts for 
negative parity states are very small as comparing 
with even parity states. The 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ for the orbital 
momentum 𝐿𝐿𝐿𝐿 = 0 is a ground state of 6Li. The 
calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ for 𝐿𝐿𝐿𝐿 = 0
indicate an attractive interaction nature and it is 
displayed by dotted line in Figure 2.

Figure 2 – The scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 system of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ state for 𝐿𝐿𝐿𝐿 = 0,
and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3+, 2+, 1+ states for 𝐿𝐿𝐿𝐿 = 2. The dotted, dashed, dotted-dashed 

and solid lines denote the calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ state for 𝐿𝐿𝐿𝐿 = 0, 
and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+, 2+, 3+ states for 𝐿𝐿𝐿𝐿 = 2, respectively.

In the case of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3+ state for 𝐿𝐿𝐿𝐿 = 2, the 
resonance energy is obtained and the calculated 
phase shifts for this state shows a sharp resonance 
behavior because of the very small resonance width.
The calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3+ state 
increases sharply ~1 MeV and it approaches 𝜋𝜋𝜋𝜋 which 
is displayed by solid line in Figure 2, and it implies a 
resonance state with small decay width. In Figure 2, 

the dotted-dashed and dashed lines represent the 
calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 2+ and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+
states for 𝐿𝐿𝐿𝐿 = 2, respectively. It can be seen from 
Figure 2, the calculated phase shifts for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 2+
and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ states express resonance behavior.
Phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 2+ state presents by the 
dotted-dashed line, and it increases gradually from 3
MeV and approaches 5𝜋𝜋𝜋𝜋 6⁄ . The dashed line 
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expresses the calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+
state and it increases smoothly from 4.5 MeV and 
approaches 𝜋𝜋𝜋𝜋 2⁄ .

𝜶𝜶𝜶𝜶 + 𝒕𝒕𝒕𝒕 two body system
We display phase shifts of the elastic 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡

scattering in Figure 3. In this time, we study only 
negative parity states of 7Li for 𝐿𝐿𝐿𝐿 = 1, and 3 waves.
The positive parity states are negligibly small as 
comparing with odd parity states.

Due to the Coulomb interaction, phase shifts are 
very small at the energy range 0 < 𝐸𝐸𝐸𝐸 < 0.5 MeV.

Phase shifts for the negative parity state and for the total 
angular momentum 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 5/2− for 
𝐿𝐿𝐿𝐿 = 3 exhibit a resonance behavior which approach 𝜋𝜋𝜋𝜋
and 5𝜋𝜋𝜋𝜋 6⁄ . As can be seen from Figure 3, the solid line 
expresses the calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−
state and it implies a sharp resonance state obtained.
The dotted-dashed line displays the results of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 =
5/2− state and it shows resonance behavior too. 

The phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 =
1/2− state for 𝐿𝐿𝐿𝐿 = 1 are drawn by dotted and dashed 
lines in Figure 3. The phase shifts behaviors for 𝐿𝐿𝐿𝐿 =
1 state show attractive nature.

Figure 3 – The scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 system of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2−
and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− state for 𝐿𝐿𝐿𝐿 = 1 and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2− states for 𝐿𝐿𝐿𝐿 = 3. 

The dotted, dashed, dotted-dashed and solid lines denote the calculated phase shifts 
of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− state for 𝐿𝐿𝐿𝐿 = 1 and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2− states for 𝐿𝐿𝐿𝐿 = 3.

Conclusions

In this work we discussed the calculated 
scattering phase shifts for the different spin parity 
states of 5Li, 6Li and 7Li nuclei applying two body 
model. The negative parity states of 𝐿𝐿𝐿𝐿 = 1 and 𝐿𝐿𝐿𝐿 = 3
waves are considered for 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 systems. 
The scattering phase shifts are calculated in positive 
parity states of 𝐿𝐿𝐿𝐿 = 0 and 𝐿𝐿𝐿𝐿 = 2 waves for 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑
system.

The 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− states of 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝
system have a resonant state for each partial state and 
the calculated phase shifts show resonance behavior. 

We calculate scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑
system for 𝐿𝐿𝐿𝐿 = 0 and 2 waves where only even
parity states are considered. The phase shifts for 
negative parity states are very small as comparing 
with even parity states in 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 system. 6Li has the 
𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒2
3 + 𝑡𝑡𝑡𝑡 cluster configuration and it reported in Ref. 

[10], the ( 𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒2
3 + 𝑡𝑡𝑡𝑡 ) configuration of 6Li is only 

slightly less probable than the (𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑) configuration. 
7Li nuclei is modelled as 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 two clusters and 

scattering phase shifts of 𝐿𝐿𝐿𝐿 = 1 , and 3 waves are 
calculated. The positive parity states are negligibly 
small as comparing with odd parity states in 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡
system.
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