
© 2022 al-Farabi Kazakh National University                                                                               Int. j. math. phys. (Online)

International Journal of Mathematics and Physics 13, №1 (2022)

IRSTI 27.41.41         https://doi.org/10.26577/ijmph.2022.v13.i1.05

D.B. Zhakebayev ,
 
A.S. Zhumali   

Al-Farabi Kazakh National University, Almaty, Kazakhstan
e-mail: Ainura.z89@gmail.com

(Received 26 April 2022; received in revised form 28 May 2022; accepted 07 June 2022)

Simulation of Ternary Fluid Mixtures Separation  
by Phase-Field Free Energy LBM

IRSTI 27.41.41 https://doi.org/10.26577/ijmph.2022.v13.i1.05

D.B. Zhakebayev , A.S. Zhumali

Al-Farabi Kazakh National University, Almaty, Kazakhstan

E-mail: Ainura.z89@gmail.com
(Received 26 April 2022; received in revised form 28 May 2022; accepted 07 June 2022)

Simulation of Ternary Fluid Mixtures Separation
by Phase-Field Free Energy LBM

Abstract. This article reviews the mathematical and computer modeling of the process of ternary fluid 
mixture separation by free energy based phase field Lattice Boltzmann equations method. The process 
under study is considered in a limited area having the shape of a rectangle. Three different sets of fluid 
components with different structures are specified. The mathematical model constructed to describe this 
process is based on the Navier-Stokes equation for an incompressible fluid and the Cahn-Hilliard equation. 
The numerical model is built on the basis of LBM using the D2Q9 model. Numerical experiments were 
performed for two scenarios: (1) – investigate the model without gravity, in order to determine the patterns 
of the surface tension effect and (2) – investigate the model with gravity force. Numerical results showed a 
spinodal separation depending on the initial fractions of fluid concentrations. The results obtained 
determine the adequacy of the constructed model for a three-component fluid.

Key words. Three-component fluid, fluid mixtures separation, Cahn-Hilliard equation, free energy, 
lattice Boltzmann method.

Introduction
 
The study of multiphase and multicomponent 

flows dynamics is primarily necessary because they 
are often found in nature, and also take place in 
industrial and production processes, which requires a 
detailed study of a number of engineering problems. 
As an application example of numerical simulation of 
multiphase and multicomponent fluid flows, one can 
note the oil and gas production, the chemical 
processing of raw materials, as well as the steam-
water mixture flows in boilers and condensers.

Various models can be used to model multiphase 
and multicomponent fluid flows [1-4]. Depending on 
the thickness of the transition layer between the 
phases, two main approaches can be distinguished: 
sharp interface models (transition layer between 
phases has zero thickness) and diffuse interface
models (transition layer between the phases has a 
finite thickness). In our paper, we use the second 
approach. Van der Waals was the first to consider the 
transition layer between phases as a layer of finite 
thickness [5]. Currently, the Cahn-Hilliard approach

[6] is widely used to describe the diffuse interface 
models.

This paper presents a mathematical model of 
incompressible three-component fluid flow using the 
phase field method based on the solution of the 
complete Navier-Stokes equation and the Cahn-
Hilliard convective equation. The numerical model is 
based on free energy LBM using the D2Q9 scheme. 
The accuracy and efficiency of the existing method 
have been tested on the basis of solving a number of 
problems. The results obtained determine the 
correctness of the constructed model for a three-
component fluid.

 
Problem statement

The process under study is considered in a limited 
area having the shape of a rectangle with dimensions
[0, 𝐿𝐿𝐿𝐿] × [0, 𝐿𝐿𝐿𝐿] (Figure1). In this area there are three 
fluid components with density 1 2,ρ ρ  and 3ρ , the 
ratio of which is: 1 2 3ρ ρ ρ> > . A less dense fluid is 
indicated in blue, a medium density fluid in green, 
and a denser fluid in red.
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Figure 1 – Scheme of the computational domain

The mathematical model of the process includes 
the continuity equation, the momentum equation for 
the mixture and the Cahn-Hilliard convective 
equation:

𝛻𝛻𝛻𝛻 ∙ 𝑢𝑢𝑢𝑢�⃗ = 0,
𝜕𝜕𝜕𝜕(𝜌𝜌𝜌𝜌𝑢𝑢𝑢𝑢��⃗ )
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝛻𝛻𝛻𝛻(𝜌𝜌𝜌𝜌𝑢𝑢𝑢𝑢�⃗ 𝑢𝑢𝑢𝑢�⃗ ) =

= −𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻 + 𝛻𝛻𝛻𝛻[𝜂𝜂𝜂𝜂(𝛻𝛻𝛻𝛻𝑢𝑢𝑢𝑢�⃗ + 𝛻𝛻𝛻𝛻𝑢𝑢𝑢𝑢�⃗ 𝑇𝑇𝑇𝑇)] + 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 + �⃗�𝐹𝐹𝐹𝑏𝑏𝑏𝑏 ,
𝜕𝜕𝜕𝜕(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝛻𝛻𝛻𝛻(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�⃗ ) = 𝛻𝛻𝛻𝛻(𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝛻𝛻𝛻𝛻𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 = 1,2,3

    (1)

where 𝑢𝑢𝑢𝑢�⃗ are the velocity components, p is the 
pressure, ρ is the density, η is the dynamic 
viscosity, iс is the phase field for the fluid 
components: 1 2 3 1,c c c+ + = �⃗�𝑔𝑔𝑔 is the gravitational 

acceleration, iM is the mobility coefficient, iµ is 

the chemical potential, �⃗�𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 + �⃗�𝐹𝐹𝐹𝑏𝑏𝑏𝑏 = ∑ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +3
𝑖𝑖𝑖𝑖=1

𝜌𝜌𝜌𝜌�⃗�𝑔𝑔𝑔 is the total force of surface tension and gravity.
For a system of a multicomponent medium, the

Landau free energy functional F can be determined 
based on the concentrations of fluids as follows [7]:

𝐹𝐹𝐹𝐹(𝑐𝑐𝑐𝑐,𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐) = ∫ �𝐹𝐹𝐹𝐹0(𝑐𝑐𝑐𝑐) + �
𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2
𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖

3

𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖=1

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

where 𝐹𝐹𝐹𝐹0(с) = � 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) − 𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) − 𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +
3

𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖=1

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)] is the bulk free energy, c – 1 2 3( , , )с c c is the 
phase variable of fluid components, 𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐) = 𝑐𝑐𝑐𝑐2(1 −
𝑐𝑐𝑐𝑐)2 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 3

𝐷𝐷𝐷𝐷
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −3𝐷𝐷𝐷𝐷

4
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are the 

constants, where 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the surface tension between 
the fluids and 𝐷𝐷𝐷𝐷 is the thickness of the transition 
layer between fluids.

The variation of the free energy function 𝐹𝐹𝐹𝐹 with 
respect to the concentration fractions of fluids yields 
the chemical potential for component 𝑖𝑖𝑖𝑖 as

𝜇𝜇𝜇𝜇1 = 2𝛽𝛽𝛽𝛽11(−28𝑐𝑐𝑐𝑐13 + 18𝑐𝑐𝑐𝑐12 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽12(−4𝑐𝑐𝑐𝑐23 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐2 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐22 + 6𝑐𝑐𝑐𝑐22 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐2 − 2𝑐𝑐𝑐𝑐2) +
2𝛽𝛽𝛽𝛽13(−4𝑐𝑐𝑐𝑐33 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐32 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐3) − (𝜆𝜆𝜆𝜆11∇2𝑐𝑐𝑐𝑐1 + 𝜆𝜆𝜆𝜆12∇2𝑐𝑐𝑐𝑐2 + 𝜆𝜆𝜆𝜆13∇2𝑐𝑐𝑐𝑐3) ,

𝜇𝜇𝜇𝜇2 = 2𝛽𝛽𝛽𝛽21(−4𝑐𝑐𝑐𝑐13 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐2 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐22 + 6𝑐𝑐𝑐𝑐12 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐2 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽22(−28𝑐𝑐𝑐𝑐23 + 18𝑐𝑐𝑐𝑐22 − 2𝑐𝑐𝑐𝑐2) +
2𝛽𝛽𝛽𝛽23(−4𝑐𝑐𝑐𝑐33 − 12𝑐𝑐𝑐𝑐22𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐32 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐3) − (𝜆𝜆𝜆𝜆21∇2𝑐𝑐𝑐𝑐1 + 𝜆𝜆𝜆𝜆22∇2𝑐𝑐𝑐𝑐2 + 𝜆𝜆𝜆𝜆23∇2𝑐𝑐𝑐𝑐3),

c
iµ
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𝜇𝜇𝜇𝜇3 = 2𝛽𝛽𝛽𝛽31(−4𝑐𝑐𝑐𝑐13 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐12 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽22(−4𝑐𝑐𝑐𝑐23 − 12𝑐𝑐𝑐𝑐22𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐22 +
12𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽33(−28𝑐𝑐𝑐𝑐33 + 18𝑐𝑐𝑐𝑐32 − 2𝑐𝑐𝑐𝑐3) − (𝜆𝜆𝜆𝜆31∇2𝑐𝑐𝑐𝑐1 + 𝜆𝜆𝜆𝜆32∇2𝑐𝑐𝑐𝑐2 + 𝜆𝜆𝜆𝜆33∇2𝑐𝑐𝑐𝑐3).

We substitute the above chemical potential iµ  
for component 𝑖𝑖𝑖𝑖 into the equation (1), as a result, the 
system will be complete. The system of equations (1) 
has the following initial conditions:

𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑣𝑣 = 0,

𝑐𝑐𝑐𝑐1(�⃗�𝑥𝑥𝑥, 0) = 𝑐𝑐𝑐𝑐1̅ + 𝛼𝛼𝛼𝛼 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(�⃗�𝑥𝑥𝑥)

𝑐𝑐𝑐𝑐2(�⃗�𝑥𝑥𝑥, 0) = 𝑐𝑐𝑐𝑐2̅ + 𝛼𝛼𝛼𝛼 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(�⃗�𝑥𝑥𝑥)

𝑐𝑐𝑐𝑐3(�⃗�𝑥𝑥𝑥, 0) = 1 − 𝑐𝑐𝑐𝑐1(�⃗�𝑥𝑥𝑥, 0) − 𝑐𝑐𝑐𝑐2(�⃗�𝑥𝑥𝑥, 0)

Boundary conditions:
On the bottom wall at 0=y :

31 20,  0.∂∂ ∂
= = = = =

∂ ∂ ∂
cc cu v

y y y
On the side walls at 𝑥𝑥𝑥𝑥 = 0, 𝐿𝐿𝐿𝐿:

for 1 2 3, , , ,u v c c c – periodic boundary conditions.
On the bottom wall at 𝑦𝑦𝑦𝑦 = 𝐿𝐿𝐿𝐿:

31 20,  0.∂∂ ∂
= = = = =

∂ ∂ ∂
cc cu v

y y y

Numerical method

The numerical solution of this model is based on 
the D2Q9 scheme of the lattice Boltzmann equations 
method. The lattice Boltzmann equation in the 
Batnagar-Gross-Krook (BGK) approximation is 
written as follows:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(�⃗�𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝚤𝚤𝚤𝚤���⃗ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 �−
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥)
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

+ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖� 

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝚤𝚤𝚤𝚤���⃗ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) − 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) =
∆𝛥𝛥𝛥𝛥
𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚

[𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) − 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥)]

where 1,2,3=m – fluid components, , m
i if g –

velocity and phase field distribution functions, ie –

discrete lattice velocity, 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 = 1
2

+ 𝑐𝑐𝑐𝑐1 �𝜏𝜏𝜏𝜏1 −
1
2
� +

𝑐𝑐𝑐𝑐2 �𝜏𝜏𝜏𝜏2 −
1
2
� + (1 − 𝑐𝑐𝑐𝑐1 − 𝑐𝑐𝑐𝑐2) �𝜏𝜏𝜏𝜏3 −

1
2
� , 𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 = 0.8 –

relaxation times, iF – force component, t∆ – latti-

ce time step, ,,eq m eq
i if g – equilibrium distribution 

functions for velocity field and phase field, respect-
tively.

The equilibrium distribution functions are 
determined by the following formulas [8]

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧𝜌𝜌𝜌𝜌 −�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖𝑖𝑖 = 0
𝑖𝑖𝑖𝑖≠0

𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖𝜌𝜌𝜌𝜌 �1 + �
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

3

𝑚𝑚𝑚𝑚=1

+
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽�

2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
� , 𝑖𝑖𝑖𝑖 ≠ 0

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 −�𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖𝑖𝑖 = 0

𝑖𝑖𝑖𝑖≠0

𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖 �
𝛤𝛤𝛤𝛤𝑚𝑚𝑚𝑚𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
+
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽�

2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
� , 𝑖𝑖𝑖𝑖 ≠ 0

 

 
where / 3sc c= is the lattice speed of sound,
c x / t∆ ∆= , x∆ and t∆ are the lattice space and 
time steps, which are equal to unity.

In the D2Q9 model the discrete velocities are 

calculated using the formulas

(0,1,1,0, 1, 1, 1,0,1)
(0,0,1,1,1,0, 1, 1, 1)

ix

iy

e c
e c

   

   
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The values of weight coefficients are as follows

𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

4
9

, 𝑖𝑖𝑖𝑖 = 0,

1
9

, 𝑖𝑖𝑖𝑖 = 1 − 4,

1
36

, 𝑖𝑖𝑖𝑖 = 5 − 8

 

In this paper, to add the force term �⃗�𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 +
�⃗�𝐹𝐹𝐹𝑏𝑏𝑏𝑏 = ∑ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜌𝜌𝜌𝜌�⃗�𝑔𝑔𝑔3

𝑖𝑖𝑖𝑖=1 to LBM we apply the scheme 
suggested by Guo et al. [9]

2 4

( )1
2

i i i
i i

f s s

e u e e utF F
c c

∆ω
τ

   − ⋅
= − + ⋅       

    



Equations for the distribution functions can be 
divided into two steps, collision and streaming:

 
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
∗(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) +

+𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(−
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥)
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

+ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)

 
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,∗(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) +

+𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(−
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) − 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥)

𝜏𝜏𝜏𝜏𝑐𝑐𝑐𝑐
) 

 
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(�⃗�𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

∗(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) 
 
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚,∗(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥)

After the second step, it is necessary to calculate 
the macroscopic variables for density, velocity and 
phase field:

𝜌𝜌𝜌𝜌 = �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ,𝜌𝜌𝜌𝜌𝑢𝑢𝑢𝑢�⃗
8

𝑖𝑖𝑖𝑖=0

= �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝚤𝚤𝚤𝚤���⃗ +
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
2
�⃗�𝐹𝐹𝐹, 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 =

8

𝑖𝑖𝑖𝑖=0

�𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
8

𝑖𝑖𝑖𝑖=0

Derivatives of macroscopic 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 are calculated 
using the following second-order isotropic 
differences [7]:

∇2𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) = ∑ 2𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖[𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥+𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛥𝛥𝛥𝛥𝜕𝜕𝜕𝜕,𝜕𝜕𝜕𝜕)−𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥,𝜕𝜕𝜕𝜕)]
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2∆𝜕𝜕𝜕𝜕2

8
𝑖𝑖𝑖𝑖=1 .

For the velocity field, as the no-slip boundary 
condition in fixed walls ( wx ) the bounce back 
scheme is used [10]:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(�⃗�𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑓𝑓−𝑖𝑖𝑖𝑖(�⃗�𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥), 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ⋅ 𝑟𝑟𝑟𝑟�⃗ > 0, 
 

where the phase is constant and the boundary 
conditions for the concentration distribution 
functions are chosen as follows:

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥𝑤𝑤𝑤𝑤 , 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) =

= 𝑔𝑔𝑔𝑔−𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 (�⃗�𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) + 2𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤,   𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ⋅ 𝑟𝑟𝑟𝑟�⃗ > 0, 

where wc  – near-wall phase.
The Neumann condition for the phase on all other 

walls:

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(�⃗�𝑥𝑥𝑥𝑤𝑤𝑤𝑤 , 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑔𝑔−𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 (�⃗�𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥), 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ⋅ 𝑟𝑟𝑟𝑟�⃗ > 0.

Algorithm for applying the lattice Boltzmann
equations method [11]:

1) Discretization of the physical domain and 
non-dimensionalization of the related parameters

2) Choice of simulation parameters
3) Domain initialization
4) Executing the collision step
5) Application of the boundary conditions
6) Executing the streaming step
7) Calculation of the macroscopic parameters.

Simulation results

We consider the evolution of the ternary fluid
mixture in a rectangular computational domain with 
dimensions: 𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥 × 𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦 , 𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥 = 80,𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦 = 80 . The 
physical size of the length is 𝐿𝐿𝐿𝐿 = 0.01 𝑚𝑚𝑚𝑚. The space 
and time steps are defined as 𝛥𝛥𝛥𝛥𝑥𝑥𝑥𝑥 = 𝐿𝐿𝐿𝐿

𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥
=

0,000125,𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = 0.000117188.
Physical quantities: the density – 𝜌𝜌𝜌𝜌1 = 1000 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚3 ,

𝜌𝜌𝜌𝜌2 = 750 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3 , 𝜌𝜌𝜌𝜌3 = 500 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚3 and the viscosity –
𝜇𝜇𝜇𝜇1 = 𝜇𝜇𝜇𝜇2 = 𝜇𝜇𝜇𝜇3 = 0.01 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 ∗ 𝑠𝑠𝑠𝑠 , the acceleration of 
gravity – 𝑔𝑔𝑔𝑔 = 9.8 𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
.  Dimensionless quantities: 

Reynolds number –  𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 = 234.787, the capillarity 
number – 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 = 0.000417399  and Atwood 
number 𝐴𝐴𝐴𝐴 = 0.142857. 
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Computer simulation by the lattice Boltzmann 
equations method is performed in lattice units, i.e. the 
physical parameters of the model are replaced by 
their lattice analogs using transformation coefficients
𝐶𝐶𝐶𝐶𝑢𝑢𝑢𝑢 = 1.06667, Cg=9102.22. LBM parameters: the
density – 𝜌𝜌𝜌𝜌1 = 1.33,𝜌𝜌𝜌𝜌2 = 1,𝜌𝜌𝜌𝜌3 = 0.67 , relaxation 
times – 𝜏𝜏𝜏𝜏1 = 𝜏𝜏𝜏𝜏2 = 𝜏𝜏𝜏𝜏3 = 0.8, the surface tension –
𝜎𝜎𝜎𝜎12 = 𝜎𝜎𝜎𝜎13 = 𝜎𝜎𝜎𝜎23 = 0.01, the surface thickness –
𝐷𝐷𝐷𝐷 = 2, the acceleration of gravity – 𝑔𝑔𝑔𝑔 =
0.00107666, and 𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.293484.

The simulation results (Figure 2, 3) show the 
dynamic change of fluids – the mixture separation of 
immiscible fluids depending on the fractions of fluid 
concentrations. The average values of the con-
centration fractions are taken equal to (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) =

(0.4,0.2,0.4), �1
3

, 1
3

, 1
3
� , (0.25, 0.25, 0.5) . In the 

first scenario (Figure 2), which does not take into 
account the acceleration of gravity, one can see the 
spinodal decomposition of the mixture over time, 
resulting from the influence of surface tension 
between the fluids.

In the second scenario (Figure 3), which takes 
into account the acceleration of gravity, at an early 
stage (𝑇𝑇𝑇𝑇 < 1 𝑠𝑠𝑠𝑠) a less dense fluid (𝜌𝜌𝜌𝜌3 = 500) begins 
to rise, while a denser fluid (𝜌𝜌𝜌𝜌1 = 1000) begins its 
downward movement. Eventually, stable three layers 
of fluid components are formed: the denser fluid at 
the bottom and the less dense fluid at the top.

The results obtained determine the adequacy of 
the constructed model for a three-component fluid.

(a) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (b) 𝑇𝑇𝑇𝑇 = 1.76 𝑠𝑠𝑠𝑠 (c) 𝑇𝑇𝑇𝑇 = 3.5 𝑠𝑠𝑠𝑠

(d) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (e) 𝑇𝑇𝑇𝑇 = 1.76 𝑠𝑠𝑠𝑠 (f) 𝑇𝑇𝑇𝑇 = 3.5 𝑠𝑠𝑠𝑠

(g) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (h) 𝑇𝑇𝑇𝑇 = 1.76 𝑠𝑠𝑠𝑠 (i) 𝑇𝑇𝑇𝑇 = 3.5 𝑠𝑠𝑠𝑠

Figure 2 – Ternary fluid separation depending on time for different fractions of fluid concentrations: (a)-(c) 
(𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.4,0.2,0.4), (d)-(f) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = �1

3
, 1
3

, 1
3
�, 

(g)-(i) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.25,0.25,0.5).
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(a) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (b) 𝑇𝑇𝑇𝑇 = 1.2 𝑠𝑠𝑠𝑠 (c) 𝑇𝑇𝑇𝑇 = 2.3 𝑠𝑠𝑠𝑠 (d) 𝑇𝑇𝑇𝑇 = 4 𝑠𝑠𝑠𝑠

(e) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (f) 𝑇𝑇𝑇𝑇 = 1.2 𝑠𝑠𝑠𝑠 (g) 𝑇𝑇𝑇𝑇 = 2.3 𝑠𝑠𝑠𝑠 (h) 𝑇𝑇𝑇𝑇 = 4 𝑠𝑠𝑠𝑠

(i) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (g) 𝑇𝑇𝑇𝑇 = 1.2 𝑠𝑠𝑠𝑠 (k) 𝑇𝑇𝑇𝑇 = 2.3 𝑠𝑠𝑠𝑠 (l) 𝑇𝑇𝑇𝑇 = 4 𝑠𝑠𝑠𝑠

Figure 3 – Effect of body force on the time evolution of density contours of a ternary fluid mixture
for different fluid concentration fractions: (a)-(d) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.4,0.2,0.4), 

(e)-(h) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = �1
3

, 1
3

, 1
3
�, (i)-(l) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.25,0.25,0.5).

Conclusion

The paper proposes a mathematical and 
numerical model for studying the separation process 
of a three-component fluid. To implement this model, 
a 2D numerical algorithm has been developed based 
on the D2Q9 scheme of lattice Boltzmann equations
method in a limited cavity in the shape of a rectangle.
Numerical simulation was carried out with and 
without taking into account gravity. The results of 
numerical simulation showed that, depending on the 
initial fractions of fluid concentrations, spinodal 
separation occurs in different ways. From a physical 
point of view, this is explained by the effect of 
surface tension between fluids. Due to the influence 
of gravity, over time, denser, medium-density and 
less dense fluids begin to arrange themselves in 

order, from bottom to top, respectively. The stability 
of the process sets in when the denser fluid
component moves down completely. The results of 
this paper prove the applicability of the methods used 
in the paper for solving problems of this type.
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