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An Initial-Boundary Value Problem for Kelvin-Voigt Equations 

with ( ))(),(),( xmxqxp Structure

Abstract. A proof of a existence global in time of solutions of initial-boundary value problems for 
nonlinear equations mostly is not easy, even in some cases it is impossible. However, by establishing some 
qualitative properties of its solutions, one can find answers to such questions. For example, by establishing 
the blowing up in a finite time property of a solution, one can show that a solution does not exist globally 
in time. Thus, in last years, the investigating the qualitative properties of solutions such as localization 
and/or blow up in a finite time, has been developing rapidly. 

In this work, we study the nonlinear initial-boundary value problem for the generalized Kelvin-Voigt 
equations describing the motion of incompressible viscoelastic non-Newtonian fluids. The equations 
generalized by replacing the diffusion and relaxation terms in equation with p(x)-Laplacian and q(x)-
Laplacian, respectively, and adding a nonlinear absorption term with variable exponents and coefficients.
A definition of a weak solution is given. Under suitable conditions for variable exponents and coefficients, 
and data of the problem, the blowing up of weak solution is established.

Key words: Kelvin-Voigt equation, blow up, p-Laplacian, damping term. 

1. Introduction

In this work, we study the following initial-
boundary value problem for the modified Kelvin-

Voigt equations (without convective term) perturbed 
by 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥), 𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥)- Laplacian diffusion, relaxation and 
damping term with variable exponents and 
coefficients
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Here ,, 2≥⊂ nRnΩ is a bounded domain with a 
smooth boundary Ω∂ and ( )TQT ,0×= Ω is the

bounded cylinder with lateral ( )TГТ ,0×∂= Ω ,
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is the rate of the strain tensor,

the vector function ( ) ( )nvvvtxv ,...,,, 21=


is a 
velocity field, the scalar function ( )tx,π is a
pressure, µ is a viscosity kinematic coefficient, and
χ is a viscosity relaxation coefficient. The 
coefficients γµχ ,, and the exponents mpq ,,
are given measurable functions onΩ , such that
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where “+ ” and “− ” on power denote the supess
and infess values on Ω of corresponding 

functions, for example, for the function ( )xσ :

( ) ( )xessxess
xx

σ=σσ=σ
∈

−

∈

+

ΩΩ
inf:,sup: .

The system of equations (1)-(2) with
2== qp and 0=γ and with constant coeffi-

cients is called the classical linear Kelvin-Voigt 
equations and it is used as the model of the motion 
of incompressible non-Newtonian fluids [1-3]. The 
name of the Kelvin-Voigt equations has been 
appeared in works of Oskolkov [4-8], though 
neither Kelvin nor Voigt have suggested any 
system of equations and these equations have been 
used in some cases even before the above 
Oskolkov’s works. For instance, in 1966, 
Ladyzhenskaya [9] has suggested these classical 
Kelvin-Voigt equations as a regularization to the 3-
dimensional Navier-Stokes equations to ensure the 
existence of unique global solutions, see also [2, 
10-11] and references therein.

The various initial-boundary value problems for 
the classical linear and nonlinear Kelvin-Voigt 
equations have been studied by several authors, for 
instance, in [2], [4-11] for homogenous fluids, i.e. 
when the density is a known constant, and in [12], for 
nonhomogeneous fluids, i.e. when the density is 
unknown function. 

On the other hand, the equation (1) is the 
pseudo-parabolic type equation, and the blow up 
properties of solutions of such equations with p-
Laplacian with variable and constant exponents were 
studied in [13-15] (see the references therein).

In last years, as PDE generalized by p-Laplacian 
and nonlinear damping terms, an investigation of 
modified equations of hydrodynamics, in particular, 
the Navier-Stokes equations modified with p-
Laplacian diffusion and with a damping term is
rapidly developing, see [16-19]. 

The system (1)-(4) with a convective term, 
when all exponents and coefficients are constant, has
been studied in [20]-[22], where the existence and 
uniqueness and the qualitative properties of weak 
solutions as large time behaviors and blow up in a 
finite time, are established.

Organization of this paper: in section 2, we 
introduce functional spaces, the inequalities and 
preliminary results used in the analysis. Later, in 
section 3 we state and prove our main result, in which 
we establish the conditions under which the weak

solutions to the investigating problems are blow up in 
a finite time.

2. Notation and Preliminaries

In this section, we introduce the necessary 
definitions and preliminary results to state the main 
results of this paper. For the definitions and notations 
of the function spaces used throughout the paper and 
for their properties, we address the reader to e.g. the 
monographs [19, 25] cited in this work. We just fix 
the following notations for the functions spaces of 
mathematical fluid mechanics:
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Let ∞<≤ p1 and 1≥∈ nRn ,Ω , be a 
domain. We will use the classical Lebesgue spaces 

( )ΩpL whose norm is denoted by Ω,p• . For any 

nonnegative k, ( )ΩpkW , denotes the Sobolev 

space of all functions ( )ΩpLu∈ such that the 

weak derivatives uDα exist, in the generalized 
sense, and are in ( )ΩpL for any multi-index α
such that k≤α≤0 .

Let [ ]∞→ ,: 1Ωp be a measurable function 
and we define 
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Given [ ]∞→ ,: 1Ωp we denote by 

( )Ω)( ⋅pL the space of all measurable functions u
in Ω such that its semimodular is finite
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The space ( )Ω)( ⋅pL is called Lebesgue space 
with variable exponent equipped with the norm
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and ( )ΩpL becomes a Banach space with this norm.
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The weak solution to the problem (1)-(4) is 
understood as the following sense

Definition 1. The vector function ( )txv ,

is 
called a weak solution to the problem (1)-(4), if:
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3. Main result

In this section, we establish the conditions for
the coefficients, exponents and data of the 
problem, 

that a weak solution to the problem (1)-(4) blows up
in a finite time, i.e. the weak solution does not exist 
globally in time. 

Theorem 1. Let the conditions (5) be fulfilled 
and for the exponents ( ) ( )xmxqxp ),(, hold the 
conditions: 

−+ ≤ mp and { }.,max +− > qm 2     (7)

Let us assume, that also 
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Then there exists a finite time ∞<maxT
(defined by (18)) such that a weak solution to 
problem (1)-(4) blows up.

Proof. The proof of Theorem 1 is based on the 
methods, presented in [23-24].
Let us first introduce the following functional
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nontrivial solution of (1)-(4) and for all 0>t
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Combining (9) and (10), we obtain 
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Integrating (12) by τ from 0 to t and applying 
the assumption (8), we get
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Applying (7), we get the following inequality 
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Next, applying the Hölder and Young inequalities together with (5), we derive the following chain of 
inequalities for tt <≤ '0 :
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It follows from (15) and (1), (2), that
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We want to prove that the functional ( )tΦ
becomes unbounded (blows up) at a finite moment. 
Let us assume that for contradiction, the blow-up
does not occur in a finite time, i.e. the nontrivial
solution v exists for all time 0>t . Since,
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On the other hand, by using the above assumption on
existence of a weak solution v to the problem (1)-
(4) for all time 0>t , we obtain that the functional 
( )tΦ is bounded at a finite moment maxT :
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But this is impossible, because by (18) the functional 
( )tΦ is unbounded at a finite moment maxT , i.e.

( ) max, Ttast →∞→Φ  and it contradicts the
existence of a solution v of the problem (1)-(4) for
all time 0>t . Therefore, it follows from this 
contradiction that the weak solution to the problem 
(1)-(4) blows up in a finite time, and it completed the 
proof of the Theorem 1.
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In this work, the nonlinear initial-boundary value 
problem for the generalized Kelvin-Voigt equations 
describing the motion of incompressible viscoelastic 
non-Newtonian fluids is considered. The equations 
has been generalized replacing the diffusion and 
relaxation terms in equation with 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥) -Laplacian 
and 𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥) -Laplacian, respectively, and adding a 
nonlinear absorption term with variable exponents 
and coefficients. 

The functional spaces with their norms and some 
necessary inequalities regarding to the variable 
exponents have been introduced. Under suitable 
conditions on exponents and coefficients, and on the 
data of the problem, the blowing up in a finite time 
property of weak solutions is established. As it is 
known from theory of PDE, this property means that 
the weak solutions of the problem do not exist global 
in time.
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